一、定义
- profiler 作用
- 入门
- pyprof
- torch.summary/torchinfo 模型参数量分析以及模型可视化
- profiling 参数分析-模型分析
- 分析某一个算子
- 做内存快照
二、实现
-
profiler 作用:分析模型执行时间
CPU/GPU 端Op执行时间统计
CPU/GPU 端Op输入Tensor的维度分析
Op的内存消耗统计 -
入门
1. 安装profiling.
pip install torch_tb_profiler
- 命令行 运行tensorboard
tensorboard --logdir=./log #日志的路径
3. 打开页面
http://localhost:6006/#pytorch_profiler
遇到的问题:json.decoder.JSONDecodeError: Invalid \escape: line 53124 column 56 (char 2265210)
报错:json.decoder.JSONDecodeError: Invalid \escape: line 53124 column 56 (char 2265210)
解决:将生成文件内 \ 路径全部替换为 /
- torch.summary/torchinfo 模型参数量分析以及模型可视化
torch.summary() 已经不在更新,合并到torchinfo 模块中。
import torch, torchvision
#model = torchvision.models.vgg
model = torchvision.models.vgg16().cuda()
from torchsummary import summary
summary(model, input_size=(3, 224, 224)) #旧版
新版
import torchvision.models as models
from torchinfo import summary
resnet18 = models.resnet18().cuda() # 实例化模型
summary(resnet18, (1, 3, 224, 224)) # 1:batch_size 3:图片的通道数 224: 图片的高宽
- profiling 参数分析-模型分析
从可视化界面的 解析结果,可以看出 各内存的占用情况,以及 各个模块,各个算子的内存占用、时间占用。 目的: 优化内存、优化时间
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
import torch.profiler
import torch.utils.data
import torchvision.models
import torchvision.transforms as T
from torchvision.datasets.vision import VisionDataset
import numpy as np
from PIL import Image
# sample model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 8, 3, padding=1)
self.conv2 = nn.Conv2d(8, 12, 3, padding=1)
self.conv3 = nn.Conv2d(12, 16, 3, padding=1)
self.conv4 = nn.Conv2d(16, 20, 3, padding=1)
self.conv5 = nn.Conv2d(20, 24, 3, padding=1)
self.conv6 = nn.Conv2d(24, 28, 3, padding=1)
self.conv7