profiler模型性能分析与优化入门

一、定义

  1. profiler 作用
  2. 入门
  3. pyprof
  4. torch.summary/torchinfo 模型参数量分析以及模型可视化
  5. profiling 参数分析-模型分析
  6. 分析某一个算子
  7. 做内存快照

二、实现

  1. profiler 作用:分析模型执行时间
    CPU/GPU 端Op执行时间统计
    CPU/GPU 端Op输入Tensor的维度分析
    Op的内存消耗统计

  2. 入门
    1. 安装profiling.

pip install torch_tb_profiler
  1. 命令行 运行tensorboard
tensorboard --logdir=./log          #日志的路径

在这里插入图片描述
3. 打开页面

http://localhost:6006/#pytorch_profiler

遇到的问题:json.decoder.JSONDecodeError: Invalid \escape: line 53124 column 56 (char 2265210)在这里插入图片描述
报错:json.decoder.JSONDecodeError: Invalid \escape: line 53124 column 56 (char 2265210)
解决:将生成文件内 \ 路径全部替换为 /

  1. torch.summary/torchinfo 模型参数量分析以及模型可视化
    torch.summary() 已经不在更新,合并到torchinfo 模块中。
import torch, torchvision
#model = torchvision.models.vgg
model = torchvision.models.vgg16().cuda()
from torchsummary import summary
summary(model, input_size=(3, 224, 224)) #旧版

新版
import torchvision.models as models
from torchinfo import summary
resnet18 = models.resnet18().cuda() # 实例化模型
summary(resnet18, (1, 3, 224, 224)) # 1:batch_size 3:图片的通道数 224: 图片的高宽
  1. profiling 参数分析-模型分析
    从可视化界面的 解析结果,可以看出 各内存的占用情况,以及 各个模块,各个算子的内存占用、时间占用。 目的: 优化内存、优化时间
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
import torch.profiler
import torch.utils.data
import torchvision.models
import torchvision.transforms as T
from torchvision.datasets.vision import VisionDataset
import numpy as np
from PIL import Image


# sample model
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 8, 3, padding=1)
        self.conv2 = nn.Conv2d(8, 12, 3, padding=1)
        self.conv3 = nn.Conv2d(12, 16, 3, padding=1)
        self.conv4 = nn.Conv2d(16, 20, 3, padding=1)
        self.conv5 = nn.Conv2d(20, 24, 3, padding=1)
        self.conv6 = nn.Conv2d(24, 28, 3, padding=1)
        self.conv7 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值