原文链接:《从0开始建立数据指标体系》
一、为啥需要数据指标
把不确定、不具体、不准确的信息,用数据指标+数据阐释清楚
二、为啥需要数据指标体系
往往一个指标不能充分说明问题,需要一组 有逻辑的数据指标来描述
三、数据指标体系五大件
第一要素:主指标(一级指标)
评价的最核心指标(产品卖的好–销售金额)
指标要素(口径):
- 业务含义:在业务上的意义
- 数据来源:哪个系统采集原始数据
- 统计时间:在何时间内产生的该数据
- 计算公式:比例、比率、汇总等计算方法
根据业务情况,主指标可能有多个(产品卖的好–销售金额、销售件数、销售毛利)
第二要素:子指标(二级/三级指标)
找到主指标的构成
销售金额=用户数*付费率*客单价
毛利=营业收入-经营成本
营业收入=用户数付费率客单价
经营成本=渠道成本+营销成本+商品成本+经营成本
第三要素:过程指标
主指标往往是最终的结果,无法监督、改进过程,需要从业务过程的梳理中拆解出过程指标
过程记录越详细,就有更多的过程指标和转化率指标,原理同线上电商、O2O业务中的漏斗分析
第四要素:分类维度
通过分类维度,把主指标切成若干块,避免平均数陷阱
月总销售金额
维度:城市
维度:用户
维度:渠道
维度:时间
…
第五要素:判断标准
评价需要参照物。
四、数据指标体系如何发挥作用
主指标+判断标准:
例如:销售金额相对预算是否达成
问题是什么,问题又多大
分类维度:
看清楚谁好谁不好
子指标/过程指标:
哪个环节有问题?怎么处理问题一目了然
五、如何构造数据指标体系
第一步:明确工作目标,清晰主指标
为的是什么?
第二步:清晰判断标准
- KPI达成率法
- 竞品对标法
- 生命周期法(环比)
- 自然周期法(同比)
第三步:了解业务管理方式,找合适的子指标
例如:销售一般按区域管理;市场一般按用户管理。业务方便最重要。
第四步:梳理业务流程,设定过程指标
梳理过程指标的详细程度,取决于:过程的重要性+数据采集难度
第五步:添加分类维度
业务能藏什么角度管理问题,选取对管理有意义的维度。
举例:
销售金额未达标
-
业务部
管理:可以管理各地分公司
追溯:哪个区域差?
维度:地域分类维度 -
市场部
管理:有权发优惠券
追溯:哪类客户需要激励?
维度:客户层级维度 -
商品部
管理:有权上新品
追溯:哪类新品好卖?
维度:商品上市时间维度