作者:小虫 飞飞@知乎(腾讯科技 )
2023.11.02,受@腾讯技术工程
邀请做线上直播,聊了一下在实际业务落地 RAG 过程中,走过的弯路和经验。核心内容是:基于 embedding search的 RAG 方法在实际应用中存在诸多短板,本视频举出大量实际案例说明这些缺陷,并提出了多种行之有效的解决方案。
分享大纲
广告词引发的“血案”:5 分钟搭建问答系统
大模型时代催生了:问答系统的重构
在传统问答模型的基础上,LLM 带来了哪些新的价值,新的影响
通用大模型在垂直领域的局限,进而介绍 RAG 的能力
Embedding 召回方案及局限性分析
朴素的 RAG 实现,通过向量召回的诸多局限,比如:不精确、粒度粗、不支持条件查询/统计、不能替代信息提取等。
使用 LLM 做信息提取的几种方案和弊端。
意图识别优化:传统NLP不是“破落户”
基于词性标注和成分句法分析(Constituency Parsing、CON),解决并列关系的多实体、多条件提取问题。
意图识别的重要性
意图识别涉及的意图分类和槽位填充的解决方案。涉及:rule-based 、 BERT fine-tuning,DIET 等。
上下文补全的解决方案
复杂多轮对话中,如何与用户交互直到其补全所有信息。
检索优化:从向量到关系
知识库召回其实不仅仅是 vector store,还可以使用关系型数据库和图数据库
vector store 使用 embedding 召回的上下文补全解决方案
关系型数据的查询方案:小型数据基于 pandas dataframe,大型数据基于 sql
图数据库应用:主要解决多度关系和推荐问题。
未来也许是 AI Agent?
提出我们当前 AI Agent 的涉及思想
简单示例
内容摘要
——The End——
分享
收藏
点赞
在看