检索增强生成 (RAG) 探索之路的血泪史及曙光

作者:小虫 飞飞@知乎(腾讯科技 )

2023.11.02,受@腾讯技术工程

 邀请做线上直播,聊了一下在实际业务落地 RAG 过程中,走过的弯路和经验。核心内容是:基于 embedding search的 RAG 方法在实际应用中存在诸多短板,本视频举出大量实际案例说明这些缺陷,并提出了多种行之有效的解决方案。

分享大纲

  1. 广告词引发的“血案”:5 分钟搭建问答系统

    1. 大模型时代催生了:问答系统的重构

    2. 在传统问答模型的基础上,LLM 带来了哪些新的价值,新的影响

    3. 通用大模型在垂直领域的局限,进而介绍 RAG 的能力

  2. Embedding 召回方案及局限性分析

    1. 朴素的 RAG 实现,通过向量召回的诸多局限,比如:不精确、粒度粗、不支持条件查询/统计、不能替代信息提取等。

    2. 使用 LLM 做信息提取的几种方案和弊端。

  3. 意图识别优化:传统NLP不是“破落户”

    1. 基于词性标注和成分句法分析(Constituency Parsing、CON),解决并列关系的多实体、多条件提取问题。

    2. 意图识别的重要性

    3. 意图识别涉及的意图分类和槽位填充的解决方案。涉及:rule-based 、 BERT fine-tuning,DIET 等。

    4. 上下文补全的解决方案

    5. 复杂多轮对话中,如何与用户交互直到其补全所有信息。

  4. 检索优化:从向量到关系

    1. 知识库召回其实不仅仅是 vector store,还可以使用关系型数据库和图数据库

    2. vector store 使用 embedding 召回的上下文补全解决方案

    3. 关系型数据的查询方案:小型数据基于 pandas dataframe,大型数据基于 sql

    4. 图数据库应用:主要解决多度关系和推荐问题。

  5. 未来也许是 AI Agent?

    1. 提出我们当前 AI Agent 的涉及思想

    2. 简单示例

内容摘要

aef1e2fbc766c0356d2a98a584c3916e.jpeg c5c14afdb552d9c13f9f89c82808dd36.jpeg c9f6476a73e2d5f93edc32c8c49e3d4e.jpeg 07923ce5f58777377a1203b04f19c5f0.jpeg 03527c7f364fa567ebf3549b842c3c63.jpeg 9dcd3f87a7b2465b279a657a2f3a7048.jpeg e3fc963f54b0c0f4e4a0bcf1725b3be2.jpeg 4bcdb354d21f00493acd89d8521e923a.jpeg

fbfeb1ba4853b26fabfe7c200967d10f.jpeg

95d5d81e26261fa8ac86a5b3f608297b.jpeg 1216746984331844ecdd5a72c0a8330e.jpeg eaf942cb8cc36ef3be94bb5a4c2907ba.jpeg a54855e7b13bacc1718f5042f6fc8ccf.jpeg 8a7f27bbc9e2cdb101b67dd026a98ed7.jpeg
409c96e6c6ec7833a379d2f0396f38e0.jpeg 40aeaf3bdc4380368b6c73f10a1673e4.jpeg 42900702d2d2e35ecc35a469b2d04326.jpeg 0b3f5b48508b499e8aae45468b53a10e.jpeg

——The  End——

72cc6c0d927c05822be1ee37a1e37014.gif

分享

收藏

点赞

在看

80f2b5c221349a8abc39c42004c06395.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值