探索 Dify:开源 LLM 应用开发平台

探索 Dify:开源 LLM 应用开发平台

介绍

在快速发展的 AI 和机器学习领域,开发人员不断寻求高效的工具,以无缝地从原型过渡到生产。Dify 正是在这样的背景下应运而生的。这是一个开源平台,专为大语言模型(LLM)应用开发设计。凭借其直观的界面、全面的功能和强大的后端支持,Dify 将彻底改变开发人员创建和部署 AI 应用程序的方式。

Dify 的核心功能

1. 工作流

Dify 提供了一个强大的可视化画布,用于构建和测试强大的 AI 工作流。通过这个功能,开发者可以直观地设计和优化他们的 AI 流程。

2. 全面的模型支持

Dify 与数百种专有和开源的 LLM 模型无缝集成,支持来自多家推理提供商和自托管解决方案的模型。无论是 GPT、Mistral、Llama3,还是任何兼容 OpenAI API 的模型,Dify 都能提供支持。

3. Prompt IDE

Dify 的 Prompt IDE 提供了一个直观的界面,用于编写提示、比较模型性能,以及向基于聊天的应用程序添加语音转换等附加功能。

4. RAG 管道

Dify 拥有广泛的 RAG 功能,涵盖从文档摄取到检索的一切,并支持从 PDF、PPT 等常见文档格式中提取文本。

5. 代理功能

用户可以基于 LLM 函数调用或 ReAct 定义代理,并为代理添加预构建或自定义工具。Dify 提供了 50 多种内置工具,如 Google 搜索、DELL·E、Stable Diffusion 和 WolframAlpha。

6. LLMOps

Dify 提供了监控和分析应用日志和性能的工具。开发者可以根据生产数据和注释不断改进提示、数据集和模型。

7. 后端即服务

Dify 的所有功能都附带相应的 API,因此可以轻松将 Dify 集成到您自己的业务逻辑中。

功能对比

功能Dify.AILangChainFlowiseOpenAI Assistants API
编程方式API + 应用导向Python 代码应用导向API 导向
支持的 LLM多种丰富的选择多种丰富的选择多种丰富的选择仅 OpenAI
RAG 引擎
代理
工作流
可观测性
企业功能(SSO/访问控制)
本地部署

使用 Dify

云端

我们提供了 Dify 云服务,任何人都可以零配置尝试。它提供了自托管版本的所有功能,并包含 200 次免费的 GPT-4 调用。

自托管 Dify 社区版

通过本入门指南,您可以快速在自己的环境中运行 Dify。请参阅我们的文档以获取进一步的参考和更深入的说明。

Dify 企业版

我们提供了额外的面向企业的功能。如果您有企业需求,请与我们安排会议或发送电子邮件进行讨论。

AWS 上的 Dify 高级版

对于使用 AWS 的初创公司和小型企业,请查看 AWS Marketplace 上的 Dify Premium,并通过一键部署将其部署到您自己的 AWS VPC。这是一种经济实惠的 AMI 解决方案,可以创建带有自定义标志和品牌的应用程序。

保持领先

在 GitHub 上为 Dify 加星,立即获取新版本通知。

快速开始

在安装 Dify 之前,请确保您的机器满足以下最低系统要求:

  • CPU >= 2 核
  • 内存 >= 4GB

启动 Dify 服务器最简单的方法是运行我们的 docker-compose.yml 文件。在运行安装命令之前,请确保您的机器上已安装 Docker 和 Docker Compose:

cd docker
cp .env.example .env
docker compose up -d

运行后,您可以在浏览器中访问 Dify 仪表板,网址为 http://localhost/install,并开始初始化过程。

如果您想为 Dify 做出贡献或进行额外的开发,请参考我们的源代码部署指南。

后续步骤

如果需要自定义配置,请参考 .env.example 文件中的注释并更新 .env 文件中的相应值。此外,您可能需要根据具体的部署环境和要求调整 docker-compose.yaml 文件本身,例如更改镜像版本、端口映射或卷挂载。做出任何更改后,请重新运行 docker-compose up -d。您可以在此处找到可用环境变量的完整列表。

如果您希望配置高可用性设置,社区贡献的 Helm Charts 和 YAML 文件可以帮助在 Kubernetes 上部署 Dify。

  • 由 @LeoQuote 提供的 Helm Chart
  • 由 @BorisPolonsky 提供的 Helm Chart
  • 由 @Winson-030 提供的 YAML 文件

Dify 是一个功能强大的开源平台,为 LLM 应用开发提供了全面的工具和支持。无论您是初学者还是经验丰富的开发人员,Dify 都能帮助您更高效地构建和部署 AI 应用程序。

03-09
### Dify的技术背景 Dify旨在简化开发者构建基于大模型的应用程序的过程[^2]。作为一个平台,它不仅支持创业团队快速将创意转化为实际产品,还帮助企业和个人探索大型语言模型(LLM)的能力边界。 #### 平台架构特点 为了使集成更加灵活高效,Dify提供了RESTful API接口来连接现有的业务逻辑与预训练的语言模型,实现了Prompt设计同应用程序代码之间的分离。这种解耦方式使得调整对话策略变得更为简便快捷,同时也便于后续维护升级工作。 #### 数据处理机制 在数据层面,借助于内置的数据追踪工具,用户可以实时监控每一次交互产生的输入输出情况以及消耗资源量等重要指标;这有助于及时发现潜在问题并采取相应措施优化性能表现。此外,对于那些希望深入挖掘背后规律的研究人员来说,这些记录同样具有极高价值。 #### 安全性和合规性考量 考虑到不同行业领域对隐私保护有着严格的要求,特别是在金融等行业内部署时尤为敏感,因此Dify特别强调了安全防护措施的重要性。通过部署为企业内的网关形式,能够有效控制访问权限,确保只有授权方才能调用相关服务功能,进而保障整个系统的稳定运行环境。 ```python import requests def call_dify_api(prompt_text): url = "https://api.dify.com/v1/generate" headers = { 'Authorization': 'Bearer YOUR_API_KEY', 'Content-Type': 'application/json' } payload = {"prompt": prompt_text} response = requests.post(url, json=payload, headers=headers) return response.json() ``` 此段Python代码展示了如何利用Dify提供的API接口发送请求给服务器端,并接收返回的结果。这里需要注意替换`YOUR_API_KEY`为真实的密钥字符串以便正常使用该函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值