改良的蛋白质设计工具可以更容易地解决具有挑战性的药物靶点,但人工智能抗体距离进入临床还有很长的路要走。
抗体(粉红色)与流感病毒蛋白(黄色)结合(艺术家的构思)。图片来源:Juan Gaertner/Science Photo Library
研究人员首次使用生成式人工智能(AI)帮助他们制造全新的抗体。
本周在bioRxiv的预印本中报道了原理验证工作1,提出了将人工智能引导的蛋白质设计引入治疗性抗体市场的可能性,该市场价值数千亿美元。
抗体 - 强烈附着在与疾病有关的蛋白质上的免疫分子 - 通常使用蛮力方法制造,包括对动物进行免疫或筛选大量分子。
可以缩短这些昂贵努力的人工智能工具有可能“使设计抗体的能力民主化”,该研究的合著者、西雅图华盛顿大学的计算生物化学家纳撒尼尔·贝内特(Nathaniel Bennett)说。“十年后,这就是我们设计抗体的方式。
英国牛津大学免疫信息学家Charlotte Deane说,“这是一项非常有前途的研究”,它代表了将AI蛋白质设计工具应用于制造新抗体的重要一步。
制作微型蛋白质
Bennett和他的同事使用了他们团队去年发布的人工智能工具2这有助于改变蛋白质设计。该工具称为RFdiffusion,允许研究人员设计可以强烈附着在另一种选择的蛋白质上的微型蛋白质。但这些定制蛋白质与抗体没有相似之处,抗体通过软盘环识别其靶标,事实证明,这些环很难用人工智能建模。
为了克服这个问题,由华盛顿大学的计算生物物理学家大卫·贝克(David Baker)和计算生物化学家约瑟夫·沃森(Joseph Watson)共同领导的团队修改了RFdiffusion。该工具基于类似于 Midjourney 和 DALL·E 等图像生成 AI 使用的神经网络。该团队通过对数千个实验确定的附着在其靶标上的抗体结构以及其他抗体样相互作用的真实示例进行训练,对网络进行了微调。
使用这种方法,研究人员设计了数千种抗体,这些抗体可以识别几种细菌和病毒蛋白的特定区域,包括SARS-CoV-2和流感病毒用来入侵细胞的蛋白质以及抗癌药物靶标。然后,他们在实验室中制作了设计的一个子集,并测试了分子是否可以与正确的靶标结合。
Watson说,大约每100个抗体设计中就有一个符合预期,这一成功率低于该团队现在使用其他类型的AI设计的蛋白质所取得的成功率。研究人员使用一种称为冷冻电子显微镜的技术确定了其中一种流感抗体的结构,并发现它可以识别靶蛋白的预期部分。
早期原理证明
少数公司已经在使用生成式人工智能来帮助开发抗体药物。Baker和Watson的团队希望RFdiffusion可以帮助解决已被证明具有挑战性的药物靶点,例如G蛋白偶联受体 - 有助于控制细胞对外部化学物质反应的膜蛋白。
但是RFdiffusion生产的抗体距离到达临床还有很长的路要走。起作用的设计抗体与其靶标的结合不是特别强。任何用于治疗的抗体也需要修改其序列以类似于天然人类抗体,以免引起免疫反应。
这些设计也是所谓的单域抗体,类似于在骆驼和鲨鱼中发现的抗体,而不是几乎所有批准的抗体药物所基于的更复杂的蛋白质。Deane说,这些类型的抗体更容易设计,也更容易在实验室中研究,首先设计这些抗体是有意义的。“但这并不能阻止它成为通往我们需要的各种方法的一步。
“这是原理验证工作,”沃森强调说。但他希望这一初步成功将为设计抗体药物铺平道路。“这感觉是一个具有里程碑意义的时刻。这确实表明这是可能的。
doi: https://doi.org/10.1038/d41586-024-00846-7