微分几何笔记(8) —— 切向量,切空间

上一篇定义了光滑微分流形,微分流形的主线内容是如何在流形上做微积分,所以我们需要把欧氏空间微积分的概念推广到流形上。我们先推广微分,因为原本在欧氏空间中的微分只依赖于函数的局部性质,这和光滑流形局部微分同胚于欧氏空间是契合的。

我觉得微分流形的本质想法就是化曲为直,流形上当然没有所谓的“直”,我们就用微分同胚的欧氏空间里的“直”去类比,得到有基底的线性空间,从而不少复杂问题就可以归结为线性代数问题。
 

8.1 导数

在笔记 (2) 定义 2.1.2 中曾写到过在欧氏空间 R n \R^n Rn 上如何定义切空间,接下来把他叙述的更加清楚些,并类似定义微分流形上的切空间。
接下来的定义思路来自 [ Lee13 ] [\text{Lee13}] [Lee13],我觉得这本书把切空间讲的很流畅。
首先我们在欧氏空间 R n \R^n Rn 中定义几何切空间 (Geometric tangent space):

定义 8.1.1 欧氏空间 R n \R^n Rn 中在 a a a 点处的 geometric tangent space 是指 R a n ≜ { a } × R n = { ( a , v ) : v ∈ R n } \R^n_a\triangleq\{a\}\times\R^n=\{(a,v):v\in\R^n\} Ran{a}×Rn={(a,v):vRn}.

直观来看, R a n \R^n_a Ran 就是将 R n \R^n Rn 中的向量,起点均选定为 a a a 得到的。那么有自然的同构 R a n ≅ R n \R^n_a\cong\R^n RanRn,我们更常见的是将 ( a , v ) (a,v) (a,v) 记为 v a v_a va,从而我们可以定义 R a n \R^n_a Ran 中的向量加法与他在 R \R R 上的数乘:
( v + w ) a = v a + w a , ( c v ) a = c ( v a ) , ∀ v , w ∈ R n , c ∈ R . (v+w)_a=v_a+w_a,\qquad (cv)_a=c(v_a),\qquad\forall v,w\in\R^n,c\in\R. (v+w)a=va+wa,(cv)a=c(va),v,wRn,cR.
注意这里等号右边的加法和数乘和原本 R n \R^n Rn 中的是有不同的,在 R a n \R^n_a Ran 中这只不过是从新选取了基点,因为同构,能这样定义是很自然的结果,但如果到流形上仍然能够这样定义,意味着这是逐点的性质,也就是所说的 C ∞ C^{\infty} C-线性。

几何切空间也同样意味着可以求方向导数,对任意 f ∈ C ∞ ( R n ) f\in C^{\infty}(\R^n) fC(Rn),由 v a v_a va 定义方向导数算子 D v ∣ a : C ∞ ( R n ) → R D_{v|_a}:C^{\infty}(\R^n)\rightarrow \R Dva:C(Rn)R

D v ∣ a f = d d t ∣ t = 0 f ( a + t v ) = lim ⁡ t → 0 f ( a + t v ) − f ( a ) t . D_{v|_a}f=\frac{d}{dt}\big|_{t=0}f(a+tv)=\lim_{t\rightarrow0}\frac{f(a+tv)-f(a)}{t}. Dvaf=dtdt=0f(a+tv)=t0limtf(a+tv)f(a).

接下来的事情让我认识到求导的本质并不是的差商求极限,而是 Lebniz \text{Lebniz} Lebniz 法则,也就是所谓的导子性质,这是一个很重要思维上的转变,就是将求导运算,看成满足某些要求的算子。这是一个很神奇的思维升华,神奇在用导子性质定义出来的导数构成的线性空间与方向导数构成的线性空间原来是同构的。接下来就详细说说,我们定义 a a a 点处的导数 (Derivation)

定义 8.1.2 a a a 点处的映射 w : C ∞ ( R n ) → R w:C^{\infty}(\R^n)\rightarrow \R w:C(Rn)R 如果满足 w w w R \R R 上线性以及 Lebniz \text{Lebniz} Lebniz 法则: w ( f g ) = g w ( f ) + f w ( g ) , ∀ f , g ∈ C ∞ ( R n ) w(fg)=gw(f)+fw(g),\forall f,g\in C^{\infty}(\R^n) w(fg)=gw(f)+fw(g),f,gC(Rn),就称 w w w a a a 点处的导数。所有 a a a 点处导数的集合记为 T a R n T_a\R^n TaRn.

因为满足 Lebniz \text{Lebniz} Lebniz 法则,我们可以对导数定义加法:
( w 1 + w 2 ) ( f g ) = g ( w 1 + w 2 ) f + f ( w 1 + w 2 ) g = ( g w 1 ( f ) + f w 1 ( g ) ) + ( g w 2 ( f ) + f w 2 ( g ) ) = w 1 ( f g ) + w 2 ( f g ) . \begin{aligned}(w_1+w_2)(fg)&=g(w_1+w_2)f+f(w_1+w_2)g\\ &=(gw_1(f)+fw_1(g))+(gw_2(f)+fw_2(g))\\ &=w_1(fg)+w_2(fg).\end{aligned} (w1+w2)(fg)=g(w1+w2)f+f(w1+w2)g=(gw1(f)+fw1(g))+(gw2(f)+fw2(g))=w1(fg)+w2(fg).

因此导数空间上的加法就是 ( w 1 + w 2 ) f = w 1 f + w 2 f (w_1+w_2)f=w_1f+w_2f (w1+w2)f=w1f+w2f 类似的有数乘 ( c w ) ( f ) = c ( w f ) (cw)(f)=c(wf) (cw)(f)=c(wf),因此 T a R n T_a\R^n TaRn 就被做成了一个线性空间,我们最关心的就是他是有限维吗?有限维的话维数是 n n n 吗?

引理 8.1.3 对上述的 w ∈ T a R n , f , g ∈ C ∞ ( R n ) w\in T_a\R^n,f,g\in C^{\infty}(\R^n) wTaRn,f,gC(Rn)
(1) w w w 作用在常数上结果为 0 0 0
(2) 若 f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0,则 w ( f g ) = 0 w(fg)=0 w(fg)=0.

证明是显然的,由线性知只要考虑 w ( 1 ) w(1) w(1) 再由 Lebniz \text{Lebniz} Lebniz 法则 w ( 1 ⋅ 1 ) = w ( 1 ) + w ( 1 ) ⇒ w ( 1 ) = 0 w(1\cdot 1)=w(1)+w(1)\Rightarrow w(1)=0 w(11)=w(1)+w(1)w(1)=0。第二条也由 Lebniz \text{Lebniz} Lebniz 法则得到。
接下来证明 R a n ≅ T a R n \R^n_a\cong T_a\R^n RanTaRn,从而得到 T a R n T_a\R^n TaRn 的维数。

命题 8.1.4 R a n ≅ T a R n \R^n_a\cong T_a\R^n RanTaRn.
证明思路:
首先由 v a v_a va 给出的方向导数当然是满足我们对导数的定义,接下来我们说明线性映射 l : v a → D v ∣ a l:v_a\rightarrow D_{v|_a} l:vaDva 是双射。
(单射)若 Ker  l ≠ 0 \text{Ker }l\neq0 Ker l=0,因为 R a n \R_a^n Ran 是有限维线性空间,我们可以只考虑他的基底 { e i ∣ a } \{e_i|_a\} {eia},若 v i e i ∣ a ∈ Ker  0 v^ie_i|_a\in\text{Ker }0 vieiaKer 0,取一个坐标函数 x j : R n → R x^j:\R^n\rightarrow \R xj:RnR,也就是把 R n \R^n Rn 中的 n n n 维坐标只取出第 j j j 个分量。那么 0 = D v ∣ a x j = v i ∂ x j ∂ x i ∣ a = v j 0=D_{v|_a}x^j=v^i\frac{\partial x^j}{\partial x^i}|_a=v^j 0=Dvaxj=vixixja=vj.
(满射)把 f f f a a a 点处 Taylor \text{Taylor} Taylor 展开,第一项为常数,从第三项往后都含有 a a a 作为二阶零点,所以对任意 w ∈ T a R n w\in T_a\R^n wTaRn,都有:

w ( f ) = w ( ∑ i = 1 n ∂ f ∂ x i ( x i − a i ) ) = ∑ i = 1 n ∂ f ∂ x i w ( x i ) , \begin{aligned}w(f)&=w\big(\sum^n_{i=1}\frac{\partial f}{\partial x^i}(x^i-a^i)\big)\\ &=\sum^n_{i=1}\frac{\partial f}{\partial x^i}w(x^i),\end{aligned} w(f)=w(i=1nxif(xiai))=i=1nxifw(xi),

v a = w ( x i ) e i ∣ a v_a=w(x^i)e_i|_a va=w(xi)eia,则有 w ( f ) = D v ∣ a ( f ) w(f)=D_{v|_a}(f) w(f)=Dva(f).

由此 T a R n T_a\R^n TaRn n n n 维线性空间,且 { ∂ ∂ x i ∣ a } \{\frac{\partial}{\partial x^i}\big|_a\} {xia} 便构成他的一组基,这个空间就是所谓的切空间,但这是在欧氏空间上的,欧氏空间当然也是流形。类似欧氏空间上的切空间,我们可以定义流形上的切空间:

定义 8.1.5 p p p 点处的映射 v : C ∞ ( M ) → R v:C^{\infty}(M)\rightarrow \R v:C(M)R 如果满足 v v v M M M 上线性以及 Lebniz \text{Lebniz} Lebniz 法则: v ( f g ) = g v ( f ) + f v ( g ) , ∀ f , g ∈ C ∞ ( M ) v(fg)=gv(f)+fv(g),\forall f,g\in C^{\infty}(M) v(fg)=gv(f)+fv(g),f,gC(M),就称 v v v p p p 点处的导数。所有 p p p 点处导数的集合记为 T p M T_pM TpM,称为 p p p 点处的切向量空间。

由于引理 8.1.3 的两条性质与函数是不是定义在 R n \R^n Rn 无关,只与导数的线性和 Lebniz \text{Lebniz} Lebniz 法则有关,所以在流形上我们仍然有相同的结论。

 

8.2 微分

现在我们再看看流形切空间之间的线性映射,要是局部微分同胚的流形,其上切空间的线性映射是同构,这就可以说明 n n n 维流形的切空间仍然是 n n n 维线性空间,所以接下来要做两件事,一是说明微分同胚的流形上切空间同构,二是说明切空间是一个局部性质。

定义 8.2.1 F : M → N F:M\rightarrow N F:MN 为光滑流形间的光滑映射, ∀ p ∈ M \forall p\in M pM,定义 F F F p p p 点的微分(Differential) d F p : T p M → T F ( p ) N dF_p:T_pM\rightarrow T_{F(p)}N dFp:TpMTF(p)N,满足对任意给定的 v ∈ T p M , d F p ( v ) v\in T_pM,dF_p(v) vTpM,dFp(v) 可以作用在 N N N 上的光滑函数,通过 ∀ f ∈ C ∞ ( N ) \forall f\in C^{\infty}(N) fC(N)
d F p ( v ) ( f ) = v ( f ∘ F ) . dF_p(v)(f)=v(f\circ F). dFp(v)(f)=v(fF).

从定义中我们可以看出 d F p ( v ) dF_p(v) dFp(v) 作为 N N N 上的切向量,作用在 C ∞ ( N ) C^{\infty}(N) C(N) 是线性且满足 Lebniz \text{Lebniz} Lebniz 法则的,因此他也是 F ( p ) F(p) F(p) 处的导数。接下来我们验证之前说的第一件事——微分同胚的流形上切空间同构。

命题 8.2.2 (微分的一些性质) M ⟶ F N ⟶ G P M\stackrel{F}{\longrightarrow}N\stackrel{G}{\longrightarrow}P MFNGP,其中 M , N , P M,N,P M,N,P 为光滑微分流形, F , G F,G F,G 为对应的光滑映射,则 ∀ p ∈ M \forall p\in M pM 有如下命题:
(1) d ( G ∘ F ) p = d G F ( p ) ∘ d F p : T p M → T G ∘ F ( p ) P d(G\circ F)_p=dG_{F(p)}\circ dF_p:T_pM\rightarrow T_{G\circ F(p)}P d(GF)p=dGF(p)dFp:TpMTGF(p)P
(2) d ( Id M ) p = Id T p M : T p M → T p M d(\text{Id}_M)_p=\text{Id}_{T_pM}:T_pM\rightarrow T_pM d(IdM)p=IdTpM:TpMTpM
(3) 如果 F F F 是微分同胚,那么 d F p : T p M → T F ( p ) N dF_p:T_pM\rightarrow T_{F(p)}N dFp:TpMTF(p)N 是同构,因此 ( d F p ) − 1 = d ( F − 1 ) F ( p ) (dF_p)^{-1}=d(F^{-1})_{F(p)} (dFp)1=d(F1)F(p).

证明思路:
(1) ∀ f ∈ C ∞ ( P ) , v ∈ T p M , \forall f\in C^{\infty}(P),v\in T_pM, fC(P),vTpM,
d ( G ∘ F ) p ( v ) ( f ) = v ( ( f ∘ G ) ∘ F ) = d F p ( v ) ( f ∘ G ) = d G F ( p ) ( d F p ( v ) ) ( f ) = d G F ( p ) ∘ d F p ( v ) ( f ) . \begin{aligned} d(G\circ F)_p(v)(f)&=v((f\circ G)\circ F)\\ &=dF_p(v)(f\circ G)\\ &=dG_{F(p)}(dF_p(v))(f)\\ &=dG_{F(p)}\circ dF_p(v)(f). \end{aligned} d(GF)p(v)(f)=v((fG)F)=dFp(v)(fG)=dGF(p)(dFp(v))(f)=dGF(p)dFp(v)(f).

(2) 这条按照定义作用在任意 v , f v,f v,f 上即可。
(3) 因为 F F F 是微分同胚,所有光滑逆 F − 1 F^{-1} F1,由 (2) 即知 d F p dF_p dFp 是同构。

然后我们再来说明切空间是一个局部性质。

命题 8.2.3 取定 v v v 属于光滑流形 M M M p p p 处切空间 T p M T_pM TpM,如果 f , g ∈ C ∞ ( M ) f,g\in C^{\infty}(M) f,gC(M),且他们在 p p p 的某个邻域 U U U 上相等,则 v ( f ) = v ( g ) v(f)=v(g) v(f)=v(g).

证明思路:
h = f − g h=f-g h=fg,则 h h h U U U 上恒等于 0 0 0,所以可以取一个在 M \ U M\backslash U M\U 上恒等于 1 1 1,支集包含于 M \ p M\backslash p M\p 的 bump function ψ \psi ψ,利用光滑函数在二阶零点处导数为 0 0 0 以及导数的线性即得到 v ( f ) = v ( g ) v(f)=v(g) v(f)=v(g).

命题 8.2.4 U U U 是包含于光滑流形 M M M 的开集, ι : U → M \iota:U\rightarrow M ι:UM 为包含映射,则 ∀ p ∈ U , d ι : T p U → T p M \forall p\in U,d\iota:T_pU\rightarrow T_pM pU,dι:TpUTpM 是同构。

证明思路:
主要用到流形上光滑函数的延拓性质。
(单射)若对某个 v ∈ T p U v\in T_pU vTpU,使得 d ι ( v ) = 0 d\iota(v)=0 dι(v)=0, 由延拓性质,对任意 f ∈ C ∞ ( U ) f\in C^{\infty}(U) fC(U),有 f ~ ∈ C ∞ ( M ) \tilde{f}\in C^{\infty}(M) f~C(M),使得在包含 p p p 的某个邻域的闭包 B ˉ \bar{B} Bˉ f ~ = f \tilde{f}=f f~=f,因此由上个命题, v ( f ) = v ( f ~ ∘ ι ) = d ι ( v ) ( f ~ ) = 0 v(f)=v(\tilde{f}\circ\iota)=d\iota(v)(\tilde{f})=0 v(f)=v(f~ι)=dι(v)(f~)=0.
(满射)对任意 w ∈ T p M w\in T_pM wTpM,定义 v : C ∞ ( U ) → R v:C^{\infty}(U)\rightarrow \R v:C(U)R,使得 v ( f ) = w ( f ~ ) v(f)=w(\tilde{f}) v(f)=w(f~),对 f f f 的任意延拓,只要在局部相等,由上一个命题知他们的导数都相等,因此这是良定义的。且 v v v 满足线性与 Lebniz \text{Lebniz} Lebniz 法则,因此 v ∈ T p U v\in T_pU vTpU. 所以对于 ∀ g ∈ C ∞ ( M ) \forall g\in C^{\infty}(M) gC(M)
d ι ( v ) ( g ) = v ( g ∘ ι ) = w ( g ∘ ι ~ ) = w ( g ) . d\iota(v)(g)=v(g\circ\iota)=w(\widetilde{g\circ\iota})=w(g). dι(v)(g)=v(gι)=w(gι )=w(g).

至此我们可以写出本篇的重点:
 

命题 8.2.5 如果 M M M n n n 维光滑流形,则 ∀ p ∈ M , T p M \forall p\in M, T_pM pM,TpM n n n 维向量空间。
 

证:
对任意 p ∈ M p\in M pM,考虑包含 p p p 的坐标卡 ( U , φ ) (U,\varphi) (U,φ),因为 φ \varphi φ U U U R n \R^n Rn 中开集的微分同胚,由命题 8.2.2(3) 微分同胚流形的切空间同构,知存在同构 d φ p d\varphi_p dφp,使得 dim  T p U = dim  T φ ( p ) φ ( U ) \text{dim }T_pU=\text{dim }T_{\varphi(p)}\varphi(U) dim TpU=dim Tφ(p)φ(U),由命题 8.2.4 切空间只依赖于局部邻域,知 T p U ≅ T p M , T φ ( p ) φ ( U ) ≅ T φ ( p ) R n T_pU\cong T_pM,T_{\varphi(p)}\varphi(U)\cong T_{\varphi(p)}\R^n TpUTpM,Tφ(p)φ(U)Tφ(p)Rn,由命题 8.1.4 欧氏空间 R n \R^n Rn 的切空间是 n n n 维向量空间,即知 T p M T_pM TpM 也为 n n n 维向量空间。
 

知道 T p M T_pM TpM n n n 维向量空间是一个非常有用的信息,这样我们就可以找到 n n n 个在 p p p 点处线性无关的切向量作为他的基底,在底空间 R n \R^n Rn 上的基底 { ∂ ∂ x i ∣ φ ( p ) } \{\frac{\partial}{\partial x^i}\big|_{\varphi(p)}\} {xiφ(p)} 可通过 d ( φ p ) − 1 d(\varphi_p)^{-1} d(φp)1 自然的拉回到 T p M T_pM TpM 上,从而成为 T p M T_pM TpM 的自然基底。

这个结果在 Hitchin 的讲义中是通过考虑切空间的对偶空间,定义为余切空间 T p ∗ M T^*_pM TpM 得出的,在引理 8.1.3 中我们看到,导数作用在相当一部分光滑函数上为 0 0 0,也就是导数算子在 C ∞ ( M ) C^{\infty}(M) C(M) 上的核空间是相当大的,记为 Z Z Z,则考虑导数算子的对偶空间 C ∞ ( M ) / Z C^{\infty}(M)/Z C(M)/Z,他是 n n n 维空间,基底记作 { d x i ∣ p } \{dx^i|_p\} {dxip},也就是坐标函数的导数构成余切空间的基底,从而切空间维数也为 n n n.

除此之外我们也知道任意光滑流形都有黎曼度量,从而自然基底可以通过 Gram-Schmidt 正交化得到正交基底。因为知道基底,我们终于可以开始进行一些计算,流形上切空间的基底来自欧氏空间,自然,求不同坐标下导数的坐标变换以及两个流形间的微分时,我们都将流形上的函数拉回到欧氏空间上,然后利用链式法则进行计算,具体计算的内容请继续参考 [ Lee13 ] [\text{Lee13}] [Lee13].

参考:
[Lee13] John M. Lee. Introduction to Topological Manifolds, 2nd edn. Graduate Texts in Mathematics, Vol. 218. Springer-Verlag, New York, 2000.

[Hit12] N. Hitchin. DIFFERENTIABLE MANIFOLDS Course C3.1b 2012 .

[Song20] 厦门大学宋翀老师讲义.

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值