微分几何笔记(8) —— 切向量,切空间

上一篇定义了光滑微分流形,微分流形的主线内容是如何在流形上做微积分,所以我们需要把欧氏空间微积分的概念推广到流形上。我们先推广微分,因为原本在欧氏空间中的微分只依赖于函数的局部性质,这和光滑流形局部微分同胚于欧氏空间是契合的。

我觉得微分流形的本质想法就是化曲为直,流形上当然没有所谓的“直”,我们就用微分同胚的欧氏空间里的“直”去类比,得到有基底的线性空间,从而不少复杂问题就可以归结为线性代数问题。
 

8.1 导数

在笔记 (2) 定义 2.1.2 中曾写到过在欧氏空间 R n \R^n Rn 上如何定义切空间,接下来把他叙述的更加清楚些,并类似定义微分流形上的切空间。
接下来的定义思路来自 [ Lee13 ] [\text{Lee13}] [Lee13],我觉得这本书把切空间讲的很流畅。
首先我们在欧氏空间 R n \R^n Rn 中定义几何切空间 (Geometric tangent space):

定义 8.1.1 欧氏空间 R n \R^n Rn 中在 a a a 点处的 geometric tangent space 是指 R a n ≜ { a } × R n = { ( a , v ) : v ∈ R n } \R^n_a\triangleq\{a\}\times\R^n=\{(a,v):v\in\R^n\} Ran{ a}×Rn={ (a,v):vRn}.

直观来看, R a n \R^n_a Ran 就是将 R n \R^n Rn 中的向量,起点均选定为 a a a 得到的。那么有自然的同构 R a n ≅ R n \R^n_a\cong\R^n RanRn,我们更常见的是将 ( a , v ) (a,v) (a,v) 记为 v a v_a va,从而我们可以定义 R a n \R^n_a Ran 中的向量加法与他在 R \R R 上的数乘:
( v + w ) a = v a + w a , ( c v ) a = c ( v a ) , ∀ v , w ∈ R n , c ∈ R . (v+w)_a=v_a+w_a,\qquad (cv)_a=c(v_a),\qquad\forall v,w\in\R^n,c\in\R. (v+w)a=va+wa,(cv)a=c(va),v,wRn,cR.
注意这里等号右边的加法和数乘和原本 R n \R^n Rn 中的是有不同的,在 R a n \R^n_a Ran 中这只不过是从新选取了基点,因为同构,能这样定义是很自然的结果,但如果到流形上仍然能够这样定义,意味着这是逐点的性质,也就是所说的 C ∞ C^{\infty} C-线性。

几何切空间也同样意味着可以求方向导数,对任意 f ∈ C ∞ ( R n ) f\in C^{\infty}(\R^n) fC(Rn),由 v a v_a va 定义方向导数算子 D v ∣ a : C ∞ ( R n ) → R D_{v|_a}:C^{\infty}(\R^n)\rightarrow \R Dva:C(Rn)R

D v ∣ a f = d d t ∣ t = 0 f ( a + t v ) = lim ⁡ t → 0 f ( a + t v ) − f ( a ) t . D_{v|_a}f=\frac{d}{dt}\big|_{t=0}f(a+tv)=\lim_{t\rightarrow0}\frac{f(a+tv)-f(a)}{t}. Dvaf=dtdt=0f(a+tv)=t0limtf(a+tv)f(a).

接下来的事情让我认识到求导的本质并不是的差商求极限,而是 Lebniz \text{Lebniz} Lebniz 法则,也就是所谓的导子性质,这是一个很重要思维上的转变,就是将求导运算,看成满足某些要求的算子。这是一个很神奇的思维升华,神奇在用导子性质定义出来的导数构成的线性空间与方向导数构成的线性空间原来是同构的。接下来就详细说说,我们定义 a a a 点处的导数 (Derivation)

定义 8.1.2 a a a 点处的映射 w : C ∞ ( R n ) → R w:C^{\infty}(\R^n)\rightarrow \R w:C(Rn)R 如果满足 w w w R \R R 上线性以及 Lebniz \text{Lebniz} Lebniz 法则: w ( f g ) = g w ( f ) + f w ( g ) , ∀ f , g ∈ C ∞ ( R n ) w(fg)=gw(f)+fw(g),\forall f,g\in C^{\infty}(\R^n) w(fg)=gw(f)+fw(g),f,gC(Rn),就称 w w w a a a 点处的导数。所有 a a a 点处导数的集合记为 T a R n T_a\R^n TaRn.

因为满足 Lebniz \text{Lebniz} Lebniz 法则,我们可以对导数定义加法:
( w 1 + w 2 ) ( f g ) = g ( w 1 + w 2 ) f + f ( w 1 + w 2 ) g = ( g w 1 ( f ) + f w 1 ( g ) ) + ( g w 2 ( f ) + f w 2 ( g ) ) = w 1 ( f g ) + w 2 ( f g ) . \begin{aligned}(w_1+w_2)(fg)&=g(w_1+w_2)f+f(w_1+w_2)g\\ &=(gw_1(f)+fw_1(g))+(gw_2(f)+fw_2(g))\\ &=w_1(fg)+w_2(fg).\end{aligned} (w1<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值