同调群和映射度习题


证:
(a) 我们从长正合列出发考虑,当 n > 2 n>2 n>2 时, X , A X,A X,A 的链复形都是平凡的,因而 H n ( X , A ) = 0 , n > 2 H_n(X,A)=0,n>2 Hn(X,A)=0,n>2,又因为 A A A 是基数为 k k k 的有限单点集 H 2 ( A ) = H 1 ( A ) = 0 H_2(A)=H_1(A)=0 H2(A)=H1(A)=0,将 S 2 S^2 S2 的南北半球视为两个二维 Δ \Delta Δ-复形,所以 H 2 ( X ) = Z H_2(X)=\mathbb{Z} H2(X)=Z,因而有短正合列:
0 → H 2 ( X ) → H 2 ( X , A ) → 0 , 0\rightarrow H_2(X)\rightarrow H_2(X,A)\rightarrow 0, 0H2(X)H2(X,A)0,
所以 H 2 ( X , A ) = Z H_2(X,A)=\mathbb{Z} H2(X,A)=Z,又因为 H 1 ( X ) = 0 , H 0 ( X ) = Z , H 0 ( A ) = ⊕ k Z H_1(X)=0,H_0(X)=\mathbb{Z},H_0(A)=\oplus_k\mathbb{Z} H1(X)=0,H0(X)=Z,H0(A)=kZ,所以:
0 → H 1 ( X , A ) → H 0 ( A ) → H 0 ( X ) , 0\rightarrow H_1(X,A)\rightarrow H_0(A)\rightarrow H_0(X), 0H1(X,A)H0(A)H0(X),
所以 H 1 ( X , A ) ≅ ker  ( ⊕ k Z → Z ) ≅ ⊕ k − 1 Z H_1(X,A)\cong\text{ker }(\oplus_k\mathbb{Z}\rightarrow\mathbb{Z})\cong\oplus_{k-1}\mathbb{Z} H1(X,A)ker (kZZ)k1Z,继续考虑 H 0 ( X , A ) H_0(X,A) H0(X,A) 的两端:
H 0 ( A ) → H 0 ( X ) → H 0 ( X , A ) → 0 , H_0(A)\rightarrow H_0(X)\rightarrow H_0(X,A)\rightarrow 0, H0(A)H0(X)H0(X,A)0,
因为最左端映射为满射,由正合列的性质知 H 0 ( X ) H_0(X) H0(X) 就是 H 0 ( X ) → H 0 ( X , A ) H_0(X)\rightarrow H_0(X,A) H0(X)H0(X,A) 的核,所以 H 0 ( X , A ) = 0. H_0(X,A)=0. H0(X,A)=0.

(b) 因为 A A A 是某个领域的强形变收缩核,由命题 2.22 知 H n ( X , A ) ≅ H ~ n ( X / A ) ≅ H n ( T 2 ∨ T 2 ) H_n(X,A)\cong\tilde{H}_n(X/A)\cong{H}_n(T^2\vee T^2) Hn(X,A)H~n(X/A)Hn(T2T2) 由命题 2.22 知其同构于 H ~ n ( T 2 ) ⊕ H ~ n ( T 2 ) \tilde{H}_n(T^2)\oplus\tilde{H}_n(T^2) H~n(T2)H~n(T2),由例2.3 对 T 2 T^2 T2 单纯同调群的计算知:
H n ( X , A ) ≅ { Z ⊕ Z ⊕ Z ⊕ Z n = 1 , Z ⊕ Z n = 2 , 0 其他. H_n(X,A)\cong\begin{cases} \mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z} & n=1, \\ \mathbb{Z}\oplus\mathbb{Z} & n=2, \\ 0 & \text{其他.} \end{cases} Hn(X,A)ZZZZZZ0n=1,n=2,其他.

类似有 H n ( X , B ) ≅ H ~ n ( X / B ) H_n(X,B)\cong\tilde{H}_n(X/B) Hn(X,B)H~n(X/B),由例 0.8 我们知道 X / B ≃ T 2 ∨ S 1 X/B\simeq T^2\vee S^1 X/BT2S1,所以:
H n ( X , B ) ≅ { Z ⊕ Z ⊕ Z n = 1 , Z n = 2 , 0 其他. H_n(X,B)\cong\begin{cases} \mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z} & n=1, \\ \mathbb{Z} & n=2, \\ 0 & \text{其他.} \end{cases} Hn(X,B)ZZZZ0n=1,n=2,其他.


证:

( a ) (a) (a) 因为 X X X n n n 维胞腔复形,没有高于 n n n 维的胞腔, Δ \Delta Δ-复形包含于胞腔复形,所以高于 n n n 维的链复形均为 0 0 0,因此 i > n , H i ( X ) = 0 i>n,H_i(X)=0 i>n,Hi(X)=0.
因为 H 0 ( X ) H_0(X) H0(X) 为其连通分支个 Z \mathbb{Z} Z 的直和,所以是自由群。假设对任意 n , H n − 1 ( X ) n,H_{n-1}(X) n,Hn1(X) 是自由群,因为 C n + 1 ( X ) = 0 , C n ( X ) C_{n+1}(X)=0,C_n(X) Cn+1(X)=0,Cn(X) 链复形是自由阿贝尔群,自由阿贝尔群的子群仍然是自由的,所以 H n ( X ) H_n(X) Hn(X) 还是自由的。

( b ) (b) (b) 若没有 n − 1 n-1 n1 n + 1 n+1 n+1 维胞腔,则 C n − 1 = C n + 1 = 0 C_{n-1}=C_{n+1}=0 Cn1=Cn+1=0,所以 H n ( X ) = C n ( X ) H_n(X)=C_n(X) Hn(X)=Cn(X),由定义即知为自由阿贝尔群,且与 n n n 维胞腔一一对应。

( c ) (c) (c) 考虑同态: H n ( X n ) → H n ( X n , X n − 1 ) H_n(X^n)\rightarrow H_n(X^n,X^{n-1}) Hn(Xn)Hn(Xn,Xn1),因为 X n − 1 X^{n-1} Xn1 X n X^n Xn 的某个邻域中为强形变收缩核,所以 H n ( X n , X n − 1 ) ≅ H n ( X n / X n − 1 ) H_n(X^n,X^{n-1})\cong H_n(X^n/X^{n-1}) Hn(Xn,Xn1)Hn(Xn/Xn1),因为 X n / X n − 1 X^n/X^{n-1} Xn/Xn1 k k k n n n 维球面的一点并,所以其 n n n 维同调群至多有 k k k 个生成元,因此 H n ( X n ) H_n(X^n) Hn(Xn) 至多由 k k k 个元素生成。


证:
S 1 × S 1 ≅ T 2 S^1\times S^1\cong T^2 S1×S1T2,我们知道其同调群为:
H n ( T 2 ) ≅ { Z ⊕ Z n = 1 , Z n = 0 , 2 , 0 n ≥ 3. H_n(T^2)\cong\begin{cases} \mathbb{Z}\oplus\mathbb{Z} & n=1, \\ \mathbb{Z} & n=0,2, \\ 0 & n\geq 3. \end{cases} Hn(T2)ZZZ0n=1,n=0,2,n3.

其泛覆叠空间 R 2 \mathbb{R}^2 R2 的同调群为:
H n ( R 2 ) ≅ { Z n = 1 , 0 其他. H_n(\mathbb{R}^2)\cong\begin{cases} \mathbb{Z} & n=1, \\ 0 & \text{其他.} \end{cases} Hn(R2){Z0n=1,其他.

再由推论 2.25, H n ( S 1 ∨ S 1 ∨ S 2 ) = H ~ n ( S 1 ) ⊕ H ~ n ( S 1 ) ⊕ H ~ n ( S 2 ) H_n(S^1\vee S^1\vee S^2)=\tilde{H}_n(S^1)\oplus\tilde{H}_n(S^1)\oplus\tilde{H}_n(S^2) Hn(S1S1S2)=H~n(S1)H~n(S1)H~n(S2),所以:
H n ( S 1 ∨ S 1 ∨ S 2 ) ≅ { Z n = 0 , 2 , Z ⊕ Z n = 1 , 0 其他. H_n(S^1\vee S^1\vee S^2)\cong\begin{cases} \mathbb{Z} & n=0,2, \\ \mathbb{Z}\oplus\mathbb{Z} & n=1,\\ 0 & \text{其他.} \end{cases} Hn(S1S1S2)ZZZ0n=0,2,n=1,其他.

再考虑他的泛覆叠空间, p : Y → S 1 ∨ S 1 ∨ S 2 , i : S 2 → S 1 ∨ S 1 ∨ S 2 p:Y\rightarrow S^1\vee S^1\vee S^2, i:S^2\rightarrow S^1\vee S^1\vee S^2 p:YS1S1S2,i:S2S1S1S2 是包含映射, i ∗ i_* i 为其诱导的基本群同态,因为 i ∗ ( π 1 ( S 2 ) ) = 0 ⊂ p ∗ ( π 1 ( Y ) ) i_*(\pi_1(S^2))=0\subset p_*(\pi_1(Y)) i(π1(S2))=0p(π1(Y))(事实上由泛覆叠空间的定义, π 1 ( Y ) = 0 \pi_1(Y)=0 π1(Y)=0),由命题 1.33 知存在提升 f : S 2 → Y f:S^2\rightarrow Y f:S2Y,由推论 2.25 知 H ~ n ( S 1 ∨ S 1 ∨ S 2 ) ≅ H ~ n ( S 1 ) ⊕ H ~ n ( S 1 ) ⊕ H ~ n ( S 2 ) , \tilde{H}_n(S^1\vee S^1\vee S^2)\cong\tilde{H}_n(S^1)\oplus\tilde{H}_n(S^1)\oplus\tilde{H}_n(S^2), H~n(S1S1S2)H~n(S1)H~n(S1)H~n(S2),
特别的取 n = 2 n=2 n=2,我们有 H 2 ( S 1 ∨ S 1 ∨ S 2 ) ≅ H 2 ( S 1 ) ⊕ H 2 ( S 1 ) ⊕ H 2 ( S 2 ) H_2(S^1\vee S^1\vee S^2)\cong H_2(S^1)\oplus H_2(S^1)\oplus H_2(S^2) H2(S1S1S2)H2(S1)H2(S1)H2(S2),也就是 0 ≠ H 2 ( S 2 ) ≅ H 2 ( S 1 ∨ S 1 ∨ S 2 ) 0\neq H_2(S^2)\cong H_2(S^1\vee S^1\vee S^2) 0=H2(S2)H2(S1S1S2),若 H 2 ( Y ) = 0 H_2(Y)=0 H2(Y)=0,则 i ∗ = p ∗ f ∗ i_*=p_*f_* i=pf 为零同态,矛盾,所以二者泛覆叠空间同调群不同。


证:
( a ) (a) (a) 由映射度的性质 (g),如果 f f f 没有不动点,则 d e g ( f ) = − 1 deg(f)=-1 deg(f)=1,又假设 − f -f f 没有不动点,则 d e g ( − f ) = − 1 → d e g ( f ) = 1 deg(-f)=-1\rightarrow deg(f)=1 deg(f)=1deg(f)=1,矛盾,所以存在 x ∈ S 2 n x\in S^{2n} xS2n,使得 f ( x ) = x f(x)=x f(x)=x 或者 f ( x ) = − x f(x)=-x f(x)=x.

( b ) (b) (b) R P 2 n \mathbb{R}P^{2n} RP2n S 2 n S^{2n} S2n 粘合对径点得到,也就是 x ∼ − x x\sim -x xx,由 (a) 知 g g g 存在不动点。

( c ) (c) (c) 考虑没有实特征值的线性变换 i : R 2 n → R 2 n i:\mathbb{R}^{2n}\rightarrow \mathbb{R}^{2n} i:R2nR2n,则其作用在 S 2 n − 1 S^{2n-1} S2n1 上,类似 e i θ e^{i\theta} eiθ 作用在 S 1 S^1 S1 上,使得不存在 x ∈ S 1 , f ( x ) = x x\in S^1,f(x)=x xS1,f(x)=x f ( x ) = − x f(x)=-x f(x)=x,所以 h : R P 2 n − 1 → R P 2 n − 1 h:\mathbb{R}P^{2n-1}\rightarrow \mathbb{R}P^{2n-1} h:RP2n1RP2n1 通过 i i i 的作用没有不动点。


证:

由性质 (g),如果 f f f 没有不动点,则 d e g ( f ) ≠ 0 deg(f)\neq 0 deg(f)=0,矛盾。
假设 ∀ y ∈ S n , f ( y ) ≠ − y \forall y\in S^n,f(y)\neq -y ySn,f(y)=y,则从 y y y f ( y ) f(y) f(y) 的连线不会经过原点,因此有同伦映射: H t ( y ) = ( 1 − t ) y + t f ( y ) ∣ ∣ ( 1 − t ) y + t f ( y ) ∣ ∣ , H_t(y)=\frac{(1-t)y+tf(y)}{||(1-t)y+tf(y)||}, Ht(y)=(1t)y+tf(y)(1t)y+tf(y),
H 0 ( y ) = y , H 1 ( y ) = f ( y ) H_0(y)=y,H_1(y)=f(y) H0(y)=y,H1(y)=f(y),由性质 ( c ) , d e g ( f ) = 1 (c),deg(f)=1 (c),deg(f)=1,矛盾,因此存在 x , y x,y x,y 满足题目条件。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值