Distributions & Currents

  1. Distributions

The theory of distributions frees differential calculus from certain difficulties that arise because nondifferentiable functions exist. This is done by extending it to the class of distributions or generalized functions.

Set D ( R n ) = C 0 ∞ ( R n ) \mathscr{D}(\mathbb{R^n})=C^\infty_0(\mathbb{R^n}) D(Rn)=C0(Rn), and then ∫ f ϕ \int f\phi fϕ exists for every locally integrable function f f f and for every ϕ ∈ D ( R n ) \phi\in\mathscr{D}(\mathbb{R^n}) ϕD(Rn).
If f f f is smooth, by integral by parts we have:
∫ f ( k ) ϕ = ( − 1 ) k ∫ f ϕ ( k ) , k = 1 , 2 , 3 , . . . \int f^{(k)}\phi=(-1)^k\int f\phi^{(k)}, k=1,2,3,... f(k)ϕ=(1)kfϕ(k),k=1,2,3,...
Observe that the integrals on the right sides make sense whether f f f is differentiable or not. Also we can assign a “ k k k-th derivative” to every f f f that is locally integrable: f ( k ) f^{(k)} f(k) is the linear functional on D \mathscr{D} D that sends ϕ \phi ϕ to ( − 1 ) k ∫ f ϕ ( k ) (-1)^k\int f\phi^{(k)} (1)kfϕ(k).
The distributions will be those linear functionals on D ( R n ) \mathscr{D}(\mathbb{R^n}) D(Rn) that are continuous with respect to a certain topology which we just simply conclude here:
we define the C k C^k Ck-norm on D ( R n ) \mathscr{D}(\mathbb{R^n}) D(Rn), and then we have the induced topology as well as the convergence theory.

Definition  1.1 \text{Definition } 1.1 Definition 1.1 Let Ω ⊂ R n \Omega\subset\mathbb{R^n} ΩRn. A linear functional on D ( Ω ) \mathscr{D}(\Omega) D(Ω) which is continuous with respect to the topology defined in [Rudin Definition 6.3] is called a distribution in Ω \Omega Ω. The space of all distributions in Ω \Omega Ω is denoted by D ′ ( Ω ) \mathscr{D}'(\Omega) D(Ω).

For example, each x ∈ Ω x\in\Omega xΩ determines a linear functional δ x \delta_x δx on D ( Ω ) \mathscr{D}(\Omega) D(Ω), by the formula
δ x ( ϕ ) = ϕ ( x ) . \delta_x(\phi)=\phi(x). δx(ϕ)=ϕ(x). Specially, if x x x is the origin of R n \mathbb{R}^n Rn, the functional δ = δ 0 \delta=\delta_0 δ=δ0 is frequently called the Dirac measure on R n \mathbb{R}^n Rn.

We can also consider functions and measures as distributions. For example, suppose f f f is a locally integrable complex function in Ω \Omega Ω, which means f f f is Lebesgue measurable and ∫ K ∣ f ( x ) ∣ d x < ∞ \int_K |f(x)|dx<\infty Kf(x)dx< for every compact K ⊂ Ω K\subset\Omega KΩ; d x dx dx denotes Lebesgue measure. Define
Λ f ( ϕ ) = ∫ Ω ϕ ( x ) f ( x ) d x , ϕ ∈ D ( Ω ) . \Lambda_f(\phi)=\int_\Omega\phi(x)f(x)dx, \phi\in\mathscr{D}(\Omega). Λf(ϕ)=Ωϕ(x)f(x)dx,ϕD(Ω).
In this way, Λ f ∈ D ′ ( Ω ) \Lambda_f\in\mathscr{D}'(\Omega) ΛfD(Ω).
Also, we can define the differentiation of distributions:
if α \alpha α is a muti-index and Λ ∈ D ′ ( Ω ) \Lambda\in\mathscr{D}'(\Omega) ΛD(Ω), the formula:
( D α Λ ) ( ϕ ) = ( − 1 ) ∣ α ∣ Λ ( D α ϕ ) , ϕ ∈ D ( Ω ) . (D^\alpha\Lambda)(\phi)=(-1)^{|\alpha|}\Lambda(D^\alpha\phi), \phi\in\mathscr{D}(\Omega). (DαΛ)(ϕ)=(1)αΛ(Dαϕ),ϕD(Ω).
As a result, we have D α Λ ∈ D ′ ( Ω ) D^\alpha\Lambda\in\mathscr{D}'(\Omega) DαΛD(Ω).

One interesting question is if D α f D^\alpha f Dαf exists in the classical sense and is locally integrable whether do we have the equation
D α Λ f = Λ D α f D^\alpha\Lambda_f=\Lambda_{D^\alpha f} DαΛf=ΛDαf
which means
( − 1 ) ∣ α ∣ ∫ Ω f ( x ) ( D α ϕ ) ( x ) d x = ∫ Ω ( D α f ) ( x ) ϕ ( x ) d x . (-1)^{|\alpha|}\int_\Omega f(x)(D^\alpha\phi)(x)dx=\int_\Omega(D^\alpha f)(x)\phi(x)dx. (1)αΩf(x)(Dαϕ)(x)dx=Ω(Dαf)(x)ϕ(x)dx.
As a result, if f f f has continuous partial derivatives of all orders up to N ≥ ∣ α ∣ N\geq |\alpha| Nα, integrations by part assure it is true. However, in general, the result may be false.

We can also multiplicate the distribution by functions: suppose Λ ∈ D ′ ( Ω ) \Lambda\in\mathscr{D}'(\Omega) ΛD(Ω) and f ∈ C ∞ ( Ω ) f\in C^\infty(\Omega) fC(Ω), we can define the distribution f Λ f\Lambda fΛ acts on a function ϕ ∈ D ( Ω ) \phi\in\mathscr{D}(\Omega) ϕD(Ω) as
( f Λ ) ( ϕ ) = Λ ( f ϕ ) . (f\Lambda)(\phi)=\Lambda(f\phi). (fΛ)(ϕ)=Λ(fϕ).

Since D ′ ( Ω ) \mathscr{D}'(\Omega) D(Ω) is the space of all continuous linear functions on D ( Ω ) \mathscr{D}(\Omega) D(Ω), we can endow it the weak*-topology. Thus, we can discuss the sequence convergence in D ′ ( Ω ) \mathscr{D}'(\Omega) D(Ω):
if f i {f_i} fi is a sequence of locally integrable functions in Ω \Omega Ω, “ f i → Λ f_i\rightarrow\Lambda fiΛ in D ′ ( Ω ) \mathscr{D}'(\Omega) D(Ω)” means
lim ⁡ i → ∞ ∫ Ω ϕ ( x ) f i ( x ) d x = Λ ϕ , \lim_{i\rightarrow\infty}\int_\Omega\phi(x)f_i(x)dx=\Lambda\phi, ilimΩϕ(x)fi(x)dx=Λϕ,
for every ϕ ∈ D ( Ω ) \phi\in\mathscr{D}(\Omega) ϕD(Ω).
We have the following two theorems:

Theorem  1.2 \text{Theorem } 1.2 Theorem 1.2 Suppose Λ i ∈ D ′ ( Ω ) \Lambda_i\in\mathscr{D}'(\Omega) ΛiD(Ω) for i = 1 , 2 , 3 , . . . i=1,2,3,... i=1,2,3,..., and
lim ⁡ i → ∞ Λ i ϕ = Λ ϕ \lim_{i\rightarrow\infty}\Lambda_i\phi=\Lambda\phi ilimΛiϕ=Λϕ
exists for every ϕ ∈ D ( Ω ) \phi\in\mathscr{D}(\Omega) ϕD(Ω). Then Λ ∈ D ′ ( Ω ) \Lambda\in\mathscr{D}'(\Omega) ΛD(Ω), and
D α Λ i → D α Λ  in  D ′ ( Ω ) , D^\alpha\Lambda_i\rightarrow D^\alpha\Lambda \text{ in } \mathscr{D}'(\Omega), DαΛiDαΛ in D(Ω),
for every multi-index α \alpha α.

Theorem  1.3 \text{Theorem } 1.3 Theorem 1.3 If Λ i → Λ \Lambda_i\rightarrow\Lambda ΛiΛ in D ′ ( Ω ) \mathscr{D}'(\Omega) D(Ω) and g i → g g_i\rightarrow g gig in C ∞ ( Ω ) C^\infty(\Omega) C(Ω), then g i Λ i → g Λ g_i\Lambda_i\rightarrow g\Lambda giΛigΛ in D ′ ( Ω ) \mathscr{D}'(\Omega) D(Ω).

The above two theorems are not hard to prove, with some knowledge of functional analysis, I omit here.

Besides, it should be mentioned that it’s possible to describe a distribution globally if its local behavior is known.
At last, the theory of distributions enlarges the concept of function in such a way that partial differentiations can be carried out unrestrictedly. Conversely, every distribution is D α f D^\alpha f Dαf for some continuous function f f f and some multi-index α \alpha α.

Theorem  1.4 \text{Theorem } 1.4 Theorem 1.4 Suppose Λ ∈ D ′ ( Ω ) \Lambda\in\mathscr{D}'(\Omega) ΛD(Ω), and K K K is a compact subset of Ω \Omega Ω. Then there is a continuous function f f f in Ω \Omega Ω and there is a multi-index α \alpha α such that
Λ ϕ = ( − 1 ) ∣ α ∣ ∫ Ω f ( x ) ( D α ϕ ) ( x ) d x \Lambda\phi=(-1)^{|\alpha|}\int_\Omega f(x)(D^\alpha\phi)(x)dx Λϕ=(1)αΩf(x)(Dαϕ)(x)dx
for every ϕ ∈ D ( K ) \phi\in\mathscr{D}(K) ϕD(K).

  1. Currents

We also denote Ω \Omega Ω as an open subset of R n \mathbb{R}^n Rn.

A differential form α \alpha α of degree p p p on Ω \Omega Ω with locally integrable coefficients,
α = ∑ ∣ I ∣ = p α I d x I , \alpha=\sum_{|I|=p}\alpha_Idx_I, α=I=pαIdxI,
acts as a linear form on the space of continuous test forms of complementary degree q = n − p q=n-p q=np: if ψ = χ d x K \psi=\chi dx_K ψ=χdxK is a smooth test form of degree q q q with compact support, then
< α , ψ > = ∑ ∣ I ∣ = p ϵ I , K ∫ Ω χ α I d V , <\alpha,\psi>=\sum_{|I|=p}\epsilon_{I,K}\int_\Omega \chi\alpha_IdV, <α,ψ>=I=pϵI,KΩχαIdV,
where ϵ I , K \epsilon_{I,K} ϵI,K is such that d x I ∧ d x K = ϵ I , K d V dx_I\wedge dx_K=\epsilon_{I,K}dV dxIdxK=ϵI,KdV, with ϵ I , K = 0 \epsilon_{I,K}=0 ϵI,K=0 unless K = I c K=I^c K=Ic complements I I I in [ 1 , N ] [1,N] [1,N], in which case ϵ I , K = ± 1 \epsilon_{I,K}=\pm1 ϵI,K=±1.

Definition 1.5 ( Current ) \text{Definition 1.5}(\text{Current}) Definition 1.5(Current) A current S S S of degree p p p is a continuous linear form on the space D n − p ( Ω ) \mathscr{D}_{n-p}(\Omega) Dnp(Ω) of test forms (i.e., smooth differential forms with compact support). We let D n − p ′ ( Ω ) \mathscr{D}'_{n-p}(\Omega) Dnp(Ω) denote the space of currents of degree p p p. the action of S S S on a test form Ψ ∈ D n − p ( Ω ) \Psi\in\mathscr{D}_{n-p}(\Omega) ΨDnp(Ω) is denoted by < S , Ψ > <S,\Psi> <S,Ψ>.

If α \alpha α is a smooth form of degree q q q, the wedge product of α \alpha α and S S S is defined as follows:

Definition 1.6 \text{Definition 1.6} Definition 1.6 For a test form Φ \Phi Φ of degree n − p − q n-p-q npq, we set
< S ∧ α , Ψ > : = < S , α ∧ Ψ > . <S\wedge\alpha,\Psi>:=<S,\alpha\wedge\Psi>. <Sα,Ψ>:=<S,αΨ>.
Here S ∈ D n − p ( Ω ) S\in\mathscr{D}_{n-p}(\Omega) SDnp(Ω), which is a current of degree p p p.
We also define α ∧ S : = ( − 1 ) p q S ∧ α \alpha\wedge S:=(-1)^{pq}S\wedge\alpha αS:=(1)pqSα.

Specially, the current S ∧ α ∧ Ψ S\wedge\alpha\wedge\Psi SαΨ is a current of maximal degree with compact support, and it can be identified with a distribution with compact support. One can similarly interpret a current of degree p p p as a differential form of degree p p p with distribution coefficients.

Next, we can extend differential calculus on forms to currents.
Definition 1.7 \text{Definition 1.7} Definition 1.7 If S S S is a current of degree p p p, then d S dS dS is the current of degree ( p + 1 ) (p+1) (p+1) defined by
< d S , ϕ > = ( − 1 ) ( p + 1 ) < S , d ϕ > , <dS,\phi>=(-1)^{(p+1)}<S,d\phi>, <dS,ϕ>=(1)(p+1)<S,dϕ>,
for any test form ϕ \phi ϕ of degree n − p − 1 n-p-1 np1.

For Ω ⊂ C n \Omega\subset\mathbb{C}^n ΩCn, a domain in the complex space, we can define the current T T T of bidegree ( p , q ) (p,q) (p,q) is a differential form of bidegree ( p , q ) (p,q) (p,q) with distribution coefficients.
And then, we have the positivity of forms and currents of bidegree ( p , p ) , ∀ (p,p), \forall (p,p), integer p , 1 ≤ p ≤ n p, 1\leq p\leq n p,1pn.

Then we states some relations between current and plurisubharmonic functions:

Proposition 1.8 \text{Proposition 1.8} Proposition 1.8 A function ϕ \phi ϕ is plurisubharmonic if and only if the current − 1 ∂ ∂ ˉ ϕ \sqrt{-1}\partial\bar\partial\phi 1 ˉϕ is positive.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值