微分几何笔记(10) —— 纤维丛

本文大量参考 GTM20 Fibre Bundles [Hus94] \text{[Hus94]} [Hus94] 一书前三章,目的是引入纤维丛的概念。这本书的主线还是相当清晰的,先给出最泛的丛的概念,再逐步的通过增加条件,来得到更具体的丛。

10.1 丛与截面

定义 10.1.1 丛 (Bundle):是指一个三元组 ξ = ( E , p , B ) \xi=(E,p,B) ξ=(E,p,B),其中 p : E → B p:E\rightarrow B p:EB 为一映射。其中 E E E 称为 total space, B B B 称为底空间 (base space), p p p 称为丛的投影映射 (projection). 对于任意 b ∈ B , p − 1 ( b ) b\in B,p^{-1}(b) bB,p1(b) 称为 b b b 点处的纤维。

注意在这里我们只是形式的定义了丛,并没有强调 E , B E,B E,B 的拓扑,从而也没有要求 p p p 是连续甚至光滑映射,这是一个很泛的概念,但我们通过微分流形的学习,心中应该有相应的例子,比如乘积丛,流形的切丛等。

例子 10.1.2 底空间 B B B 上以 F F F 为纤维的乘积丛 ( B × F , p , B ) (B\times F,p,B) (B×F,p,B) 就是丛的例子,这里映射 p : B × F → B , p:B\times F\to B, p:B×FB, b × F ↦ b . \quad b\times F\mapsto b. b×Fb.

映射 p p p 就是限制在 B × F B\times F B×F 的第一个分量上的投影映射,这也是为什么在一般丛的定义中, p p p 会被称为投影。

有了丛我们可以定义子丛:

定义 10.1.3 ( E ′ , p ′ , B ′ ) (E',p',B') (E,p,B) ( E , p , B ) (E,p,B) (E,p,B) 的子丛是指: E ′ ⊂ E , B ′ ⊂ B E'\subset E,B'\subset B EE,BB,并且 p ′ = p ∣ E ′ : E ′ → B ′ p'=p|_{E'}:E'\to B' p=pE:EB.

接下来我们定义什么是截面:
定义 10.1.4 ( E , p , B ) (E,p,B) (E,p,B) 的一个截面是指一个映射 s : B → E s:B\to E s:BE,使得 p s = 1 B ps=1_B ps=1B.

也就是说截面对 B B B 中的每一点 b b b 指定了某些 b b b 点纤维中的元素。比如我们熟知的向量场,例如地球上的风形成的向量场,在每一点指定了该点切空间里的一个切向量,再比如微分流形中 Frobenius 定理里涉及到的 k k k 维 distribution,就是在每点处给出一个切空间的 k k k 维子空间的基底。

说到 Frobenius 定理,这里其实还有个好玩的问题,就是首先由毛球定理我们知道对于 2 n 2n 2n 维的球面,其上没有处处非零的向量场,也就意味着 S 2 n S^{2n} S2n 没有 1 1 1 维的 distribution,那么我们就自然会好奇,我们有没有办法判断对于怎样的流形,有着怎样维数的 distribution 呢?我在 MSE 上问了这个问题,得到的回答是对于某些特殊的维数,我们可以通过看流形的欧拉类是否消失来判断(不懂):
distribution 的存在性

乘积丛,往往是我们最平凡的情况,对于乘积丛,截面也可以写成更简单的形式:

命题 10.1.5 乘积丛 ( B × F , p , B ) (B\times F,p,B) (B×F,p,B) 的每一个截面的作用都可以直接写出: s ( b ) = ( b , f ( b ) ) s(b)=(b,f(b)) s(b)=(b,f(b)),其中 f : B → F f:B\to F f:BF 是被 s s s 唯一决定的映射。

证明:
最后一句是显然的,因为 s s s 就是我们在每一点处指定了纤维丛中的元素,也就是说唯一决定了 f f f. 假设 s ( b ) = ( s ′ ( b ) , f ( b ) ) s(b)=(s'(b),f(b)) s(b)=s(b),f(b)),那么 p s ( b ) = s ′ ( b ) = 1 B ps(b)=s'(b)=1_B ps(b)=s(b)=1B,所以 s ′ ( b ) = b s'(b)=b s(b)=b.

所以我们可以看到对于乘积丛, s s s f : B → F f:B\to F f:BF 之间的关系是一一对应的。

GTM20 这本书还好在他穿插着用范畴的语言讲了些内容,并且对于没有学过范畴的人也是可以接受的。

10.1.6 丛之间的态射 (bundle morphism):记 ( E , p , B ) (E,p,B) (E,p,B) ( E ‘ , p ’ , B ‘ ) (E‘,p’,B‘) (E,p,B) 是两个丛,他们之间的态射定义为 ( u , f ) : ( E , p , B ) → ( E ′ , p ′ , B ′ ) (u,f):(E,p,B)\to(E',p',B') (u,f):(E,p,B)(E,p,B),其中 u : E ′ → E , f : B → B ′ u:E'\to E,f:B\to B' u:EE,f:BB 使得 p ′ u = f p p'u=fp pu=fp,也就是如下图表交换:

E → u E ′ ↓ p ↓ p ′ B → f B ′ \begin{array}{ccc} E&\stackrel{u}{\rightarrow}&E'\\ \downarrow\scriptstyle{p}&&\downarrow\scriptstyle{p'}\\ B&\stackrel{f}{\rightarrow}&B' \end{array} EpB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值