什么是分数阶控制器

转自他人论文,本博文仅做整理。

一、 介绍

       分数阶微积分是一个古老而又“新鲜”的概念,早在整数阶微积分创立的初期,就有一些学者开始考虑 它的含义,然而,由于缺乏应用背景和计算困难等原因,分数阶微积分理论及应用的研究一直没有得到太 多实质性进展。近年来,随着计算机技术的跨越式发展和分数阶微积分理论的不断深入研究,人们发现分 数阶微积分特别适合描述具有记忆特性、与历史相关的物理变化过程,如黏弹性特性,而实际系统中具有 这样性质或动态特性的对象随处可见。目前,研究人员在软物质、控制工程、反应扩散、流变学等诸多领域 开始采用分数阶模型进行描述,并得到了一些特殊性质和更精细化的结果,这极大地鼓舞和促进了人们对 分数阶动力学系统理论和应用的研究。众所周知,整数阶微分系统表征的是对象属性(或状态)的瞬时变 化特性,而分数阶微分系统表征的是对象属性(或状态)的变化。因此,从一定意义上说,用分数阶微 积分学理论进行建模更能真实地刻画与反映对象的某些特殊性质。已取得的研究成果表明,分数阶动力 系统具有其独特优势。

       由于分数阶微积分算子的特殊性, 传统整数阶系统的稳定性理论并不能直接应用到分数阶系统的研究中,使得分数阶动力学系统的稳定性分析变得更为困难。Mittag-Leffler稳定性的含义本质上是 Lyapunov指数稳定性的扩展,至于一般意义 下的分数阶系统的 Lyapunov稳定性直接方法,目前尚缺乏强有力的数学工具。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值