计算入瞳、出瞳位置及孔径大小

一、概念

孔径光阑和视场光阑

孔径光阑:决定到达像的光能量大小的任何原件,限制入射光束的大小。

视场光阑:限制可以被系统成像的物的大小或角宽度的元件,限制了成像范围。

       孔径光阑控制从物点到共轭像点的光线的数目,视场光阑控制物点的个数。

入射光瞳和出射光瞳

入射光瞳:从物上一轴上点穿越孔径光阑之前的元件看到的孔径光阑的像。

出射光瞳:从像上一轴上点穿过中间插入的透镜看到的孔径光阑的像。

       实际进入光学系统的光锥由入射光瞳决定,而离开光学系统的光锥由出射光瞳决定。

主光线和边缘光线

主光线:过孔径光阑中心的光线。

边缘光线:过孔径光阑边缘的光线。

特点:任一个物点的主光线一定会过孔径光阑、入瞳、出瞳的中心,其边缘光线一定会过孔径光阑、入瞳、出瞳的边缘。

 

 

 

参考《光学》第五版 Eugene Hecht

 

二、工程实现

如何寻找孔径光阑?

对一近轴光线进行追迹,记录光线在每一个元件上的高度y和有效孔径CA,CA/y最小的就是代表孔径光阑的元件

如何寻找入瞳?

1. 计算入瞳位置

    将孔径光阑的中心看作是一个物点,向左进行追迹,得到第一个透镜面光线的高度y以及出射角u,(y/tan(u))+Δz可以计算出入瞳位置距第一个透镜面的距离(S0)。

2. 计算入瞳孔径

    将孔径光阑边缘看作是一个物点,向左进行追迹,得到第一个透镜面的光线高度y以及出射角u,(y/tan(u))-Δz可以计算出出射光线与光轴的交点距第一个透镜面的距离(S1),可得该轴上点距入瞳中心的距离S=S0+S1,入瞳孔径R=S*tan(u)。

如何寻找出瞳?

1. 计算出瞳位置

    将孔径光阑的中心看作是一个物点,向右进行追迹,得到最后一个透镜面光线的高度y以及出射角u,(y/tan(u))+Δz可以计算出出瞳位置距最后一个透镜面的距离(S0)。

2. 计算出瞳孔径

     将孔径光阑边缘看作是一个物点,向右进行追迹,得到最后一个透镜面的光线高度y以及出射角u,(y/tan(u))-Δz可以计算出出射光线与光轴的交点距最后一个透镜面的距离(S1),可得该轴上点距出瞳中心的距离S=S0+S1,出瞳孔径R=S*tan(u)。

参考《Modern Optical Engineering》

 

 

<think>好的,我现在要详细解答用户关于直径的定义光学概念的问题。首先,我需要回顾相关的光学知识,确保自己对直径的理解准确无误。根据用户提供的引用内容,直径是孔径光阑在系统的物空间中所成的像的直径。这意味着直径孔径光阑之间是共轭关系,也就是说它们互为物像关系。 接下来,我需要确认这一概念是否与其他光学概念如孔径光阑、等有直接联系。根据引用[1],孔径光阑、互为物像共轭,并且它们对光束的限制作用是等价的。这说明直径的定义不仅仅是孔径光阑本身的物理尺寸,而是其在物空间的像的大小。这一点需要重点强调,避免用户混淆实际孔径光阑的大小直径之间的区别。 然后,用户提供的引用[2]中提到,当孔径光阑位于系统前方(如第一片透镜或反射镜)时,孔径光阑与直径是重合的,此时两者的数值一致。而当孔径光阑位于系统中间时,由于前组透镜的变化会导致直径不断变化,这会影响系统的F数设置。因此,直径的稳定性对于光学设计非常重要,尤其是在需要固定F数的情况下,选择合适的位置作为孔径光阑是关键。 在解释过程中,我需要使用正确的LaTeX格式来呈现数学表达式。例如,提到直径时,可以表示为$D_{ent}$,而系统的F数则是$F = \frac{f}{D_{ent}}$,其中$f$是系统的焦距。这些公式需要独立成段,使用$$...$$格式,确保排版正确。 同时,需要确保回答结构清晰,分点说明直径的定义、与孔径光阑的关系、在光学系统中的重要性以及实际应用中的注意事项。每个部分都应简明扼要,避免过于冗长,但又要覆盖所有关键点。 此外,用户要求生成相关问题,我需要根据内容提三个相关的问题,帮助用户进一步理解该主题。这些问题可以涉及直径与F数的关系、位置变化的影响,以及实际设计中的考虑因素。 最后,检查引用是否正确添加,确保每个引用标识对应到用户提供的参考资料,并且在回答末尾列参考文献,格式符合要求。同时,确认所有行内公式独立公式的语法正确,避免现LaTeX错误。 总结来说,回答需要涵盖定义、共轭关系、系统影响、实际应用,并辅以公式引用,结构清晰且符合用户指定的格式要求。</think>### 直径的定义与光学概念 **1. 直径的定义** 直径(Entrance Pupil Diameter)是光学系统中**孔径光阑**在物空间的像的直径[^1]。简单来说,孔径光阑是实际限制光束进系统的物理元件(如光阑或透镜边框),而****是孔径光阑通过其前方光学元件所成的像。直径即为这个像的直径,用符号$D_{\text{ent}}$表示。 **2. 孔径光阑的共轭关系** - 孔径光阑、三者互为物像共轭关系,即孔径光阑在物空间的像,孔径光阑在像空间的像[^1]。 - 例如,若孔径光阑位于透镜组中间,其前方的透镜会将孔径光阑成像到物空间,形成。 **3. 直径与系统参数的关系** - 直径直接影响系统的**F数**(焦距与直径的比值): $$ F = \frac{f}{D_{\text{ent}}} $$ 其中$f$为系统焦距。F数越小,系统通光能力越强。 - 在光学设计软件(如Zemax)中,若选择“直径”作为孔径类型,需确保孔径光阑的位置固定(如第一片透镜),否则前组透镜的参数变化会导致直径波动,影响F数稳定性[^2]。 **4. 实际应用中的重要性** - **成像系统设计**:直径决定了系统集光能力与景深。例如,望远镜的直径越大,分辨率越高。 - **孔径光阑位置选择**:若将第一片透镜设为孔径光阑,直径与光阑实际尺寸一致,简化设计;若光阑位于系统内部,需通过共轭关系计算直径。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值