图1为两个等温表面间的两种极端布置情况:(a)中两表面无限接近,相互间的换热量最大;(b)中两表面位于同一平面上,相互间的辐射传热量为零。由图可以看出,两个表面间的相对位置不同时,一个表面发出而落到另一个表面上的辐射能的百分数随之而异,从而影响传热量。角系数的定义是专门来研究表面形状及空间相对位置对这个百分数的影响和计算。

将表面1发出的辐射能中落到表面2的百分数称为表面1对表面2的角系数(angle factor),记为。同理,也可以定义表面2对表面1的角系数。
假定:(1)所研究的表面是漫反射;(2)在所研究表面的不同地点上向外发射的辐射热流密度是均匀的。在这两个假定下,物体表面温度及发射率的改变只影响该物体向外发射的辐射能的多少,但不影响辐射能落到其他表面上的百分数。于是,角系数是一个和两个表面温度及发射率无关的纯几何因子。
一个微元到另一个微元
的角系数,记为
。下标
分别代表
。按定义:
如果要知道如何计算角辐射系数,我们要明白辐射力、立体角、以及定向辐射强度这三个概念。
辐射力(E):单位时间内单位表面积向其上的半球空间的所有方向辐射出去的全部波长范围内的能量被称为辐射力(emissive power,图2所示),记为E,其单位为。

任意微元表面dA都将空间划分为对称的两部分:该表面之上与之下,每一部分都是一个半球空间;微元面dA能向其上的半球空间发射辐射能如图2所示,也能接受来自该半球空间的辐射能。
立体角(solid angle)
使用三维空间的立体角(solid angle)及微元立体角来表示某一方向的空间所占的大小,它们分别定义为
(1)

在图3所示的球坐标系中,φ为经度角(longitudal angle),θ为维度角(latitudinal angle)。空间的方向可以用该方向的经度角和纬度角来表示。立体角的单位称为空间度,记为rs。
由图3可得
(2)
带入公式(1),可得微元立体角为
(3)
定向辐射强度(I): 单位可见面积发射出去的落到空间任意方向的单位立体角的能量。
黑体辐射可以预期,由于对称性,在相同纬度角下从微元黑体面积像空间不同经度方向单位立体角中辐射出去的能量是相等的。因此研究黑体辐射在空间不同方向的分布只要查明辐射能按不同纬度角分布的规律就可以了。设面积为dA的黑体微元向围绕空间维度θ方向的微元立体角dΩ内辐射出去的能量为,则定向辐射强度I的求解满足公式(4)
(4)
公式(4)的另一种形式为
(5)
可以被视为从θ方向看过去的面积,称为可见面积。
将公式(4)两端各乘以dΩ,然后对整个半球空间做积分,就得到从单位黑体面积发射出去落到整个半球空间的能量,即黑体的辐射力:
(6)
将公式(3)代入上式可得
(7)
角系数计算
如图4所示,微元到另一个微元
的角系数可以写为:

参考资料:《传热学》陶文铨第五版