立体角的基本内容

立体角

角度(angle)与立体角(solid angle)1

  • Angle: ratio of subtended arc length on circle to radius,圆上所对应的弧长与半径之比.
    角度示意图
    θ = l r ; C i r c l e   h a s   2 π   r a d i a n s . \theta=\frac{l}{r}; \\ Circle \ has \ 2\pi \ radians. θ=rl;Circle has 2π radians.

  • Solid Angle:ratio of subtended area on sphere to radius squared.球面上面积与所对应的半径平方之比。如下图所示2

立体角
Ω = A r 2 ; S p h e r e   h a s   4 π   s t e r a d i a n s . \Omega =\frac{A}{r^2}; \\ Sphere \ has \ 4\pi \ steradians. Ω=r2A;Sphere has 4π steradians.

立体角的微分与积分1

  • 微分立体角
    立体角微分
    其中 θ \theta θ 为天顶角, Φ \varPhi Φ 为方位角。

  • 对立体角在球面的积分

Ω = ∫ S 2 d ω = ∫ 0 2 π ∫ o π s i n θ d θ d ϕ = ∫ 0 2 π ( − c o s θ ) ∣ 0 π d ω = 4 π \Omega = \int_{S^2}d\omega =\int_0^{2\pi}\int_o^\pi sin\theta d\theta d\phi =\int_0^{2\pi}(-cos\theta)|_0^\pi d\omega =4\pi Ω=S2dω=02πoπsinθdθdϕ=02π(cosθ)0πdω=4π

立体角的意义2

立体角的本质是一段封闭曲线对于观察点所张开的角度,只有这个角度是重要的,毕竟我们引入立体角就是为了获得这个视场角。而封闭曲线围成的曲面具体是什么形状,其实并不重要.


  1. 知乎:基于物理渲染的基础知识 ↩︎ ↩︎

  2. 炸鸡人:立体角简介 ↩︎ ↩︎

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页