为了不用高深的数学知识来理解LLMs(大型语言模型)是如何工作的,我们可以从以下几个简单的方面来解释,并结合一些Python代码示例:
- 标记(Tokens)
LLMs处理文本的基本单位是标记(Tokens),而不是完整的单词或句子。在Python中,我们可以使用tokenizers
库来模拟这一过程。
上述代码模拟了如何训练一个简单的tokenizer并将文本转换为标记的过程。
- 预测下一个标记
LLMs的核心功能之一是预测给定文本序列的下一个标记。这通常是通过在大量文本数据上训练神经网络模型来实现的。在Python中,我们通常不会直接编写一个完整的LLM,但可以使用像Hugging Face的Transformers库来加载预训练的模型,并请求下一个标记的预测。
注意:上面的代码使用了generate
方法,该方法实际上会生成多个标记,直到达到最大长度或遇到特定的结束标记。在真实应用中,我们通常会多次调用模型以生成更长的文本。
- 超参数和温度(Temperature)
超参数,如温度(Temperature),允许我们控制模型生成文本的“创造性”或“确定性”。较高的温度会导致模型生成更不确定、更“创新”的文本,而较低的温度则会使模型更“保守”,更可能生成更常见的短语。
在Transformers库中,当使用generate
方法时,你可以通过设置temperature
参数来调整温度。
上述代码演示了如何通过调整温度来影响模型生成文本的方式。较高的温度值(如1.5)可能导致生成的文本更具创新性,而较低的值(如0.5)则更可能产生常见且保守的文本。