图数据处理:当每个user包含多个样本时,将其视为不同的样本,为每个sample赋予一个id,并更新边关系

本文介绍了一种处理图数据的方法,当每个user包含多个样本时,为每个样本分配唯一id,并更新边的关系。首先,详细讨论了原始数据,包括节点数据(node_data)和边数据(edge_data)。接着,提出了数据处理思路,通过为node_data的每个样本赋予唯一的node_id,并更新edge_data以确保源节点和目标节点都在node_data中。处理过程中,涉及步骤包括样本id生成、数据集划分、边关系筛选及文件保存等。
摘要由CSDN通过智能技术生成

1. 原始数据

  • node_data: 节点数据,其中node_data[‘vroleid’]列为用户id,其他列包括node label和node feature。同一个用户id可能有多条样本,如果直接去重则会造成数据损失,随之带来的正负样本不平衡问题会进一步导致其与真是数据分布不符。
  • edge_data: 节点关系数据,edge_data[‘vroleid’]和edge_data[‘friend_roleid’]分别为具有连边关系的源节点和目标节点,edge_data[‘friend_level’]为该条关系的edge feature。

2. 数据处理思路

为node_data中的每一个样本赋予一个独有的node_id,并更新edge关系。

  1. 合并多个node_data文件,并按需定义训练集和测试集,以test_mask列表示。
  2. 对于edge_data,只保留源节点和目标节点均在node_data中的条目。
  3. 对node_data的每一行样本赋予一个独有的node_id,因此每一个vroleid可能会对应多个不同的node_id,做一个key=vroleid,value=[node_id_1,…,node_id_n]的字典。
  4. 更新边关系,即更新edge_data
  5. 保存文件

2.1. 步1和步2

import numpy as np
import pandas as pd
from collections import Counter
from copy import deepcopy
from tqdm import tqdm
from itertools import product

def read_data(file = 'train.txt'):
    node_data = pd.read_table(file).sample(frac = 1.0).reset_index(drop = True)
    node_data['vroleid'] = node_data['vroleid'].astype('str')
    print('node_data: shape = {}, # user = {}'.format(node_data.shape, len(set(node_data['vroleid']))))
    return node_data

def concat_data(data): # 合并多个node_data文件,最后一个文件作为测试集,其他的为训练集,使用test_mask来定义
    concat_data = data[0]
    for temp in data[1:]:
        print('Shape: Original = {} | New = {} | Concat = {}'.format(concat_data.shape, temp.shape, concat_data.shape[0] + tem
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值