目录 摘 要 问题重述 一、数据预处理 1.1 用户 id 统一 1.2 城市数据处理 1.3 日期调整 1.4 数据精修 1.5 基于 GINI 决策树 ID3 算法的特征增益计算 1.5.1 计算信息增益 1.5.2 建立决策树 二、城市与登录情况的数据分析 2.1 城市分布情况 2.2 用户登录情况 三、用户购买概率的评判模型建立 3.1 模型概述 3.2 模型算法的选择理由 3.3 前期准备 3.3.1 特征选取 3.3.2 数据集构成 3.4 模型的建立 3.5 预测结果 四、用户行为分析与建议 4.1 用户登录情况 4.2 用户访问情况 4.3 用户信息情况 4.4 结论 五、模型总结与评价 5.1 模型的优势 5.2 模型的改进 六、参考文献 代码实现 1.数据预处理与模型建立 2.可视化呈现处理 3.任务 4 提取数据 摘 要 如今互联网不断发展,但是对于各领域公司来说,如何识别高质量的用户和渠道, 从而进一步优化各自的营销方案一直是一个难点。本文以一家公司的用户行为数据为例, 通过数据统计分析的手段对用户购买结果与行为价值进行判别 针对任务一,本文对给定的用户信息表( user_info.csv )、用户登录情况表 (