百度百科关于模糊数学的介绍:
模糊数学又称Fuzzy Mathematics,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。
一、T-S模糊模型
T-S模糊模型是复杂非线性系统模糊建模中的一种典型的模糊动态模型,由Takagi 和Sugeno 于1985 年提出,其主要特点:前提部依据系统输入、输出间是否存在局部线性关系来进行划分,结论部由多项式线性方程来表达,从而构成各条规则间的线性组合,使非线性系统的全局输出具有良好的线性描述特性。
模糊逻辑的设计不依赖被控对象的模型,但却非常依赖专家经验和知识。模糊逻辑的优点:能将人的控制经验通过模糊规则融入控制器中,通过设计模糊规则,实现高水平的控制器设计[3]。
基于模糊逻辑的控制器采用了“IF-THEN”控制规则,即T-S模糊系统,不便于控制参数的学习和调整,使得构造具有自适应的模糊控制器比较困难。
万能逼近原理是自适应模糊控制的理论基础,见万能逼近原理。
模糊滑模控制设计的一般方法:将滑模控制结合模糊逼近用于非线性系统的控制中,采用模糊系统实现模型未知部分的自适应逼近,可有效降低模糊增益,模糊自适应律通过Lyapunov方法推导,通过自适应权重的调节保证整个闭环系统的稳定性和收敛性[3]。
名词解释:
前件,前件部,就是前提部,即IF部分,前件变量
后件,后件部,就是结论部,即THEN部分,后件变量
模糊集: 一个包含只具有部分隶属度元素的集合。
隶属函数: 用于指定一个给定的输入属于一个集合或与一个概念相关的程度的函数。
隶属度: 隶属函数的输出值,范围为0到1之间,又称为隶属值或隶属等级。
对于多输入多输出(MIMO)非线性连续动态系统,如果用基于T-S模糊模型的状态空间方程来描述后件,则模糊规则可表示为:
Rule
i
:
If
μ
1
(
t
)
is
M
i
1
,
⋯
,
and
μ
g
is
M
i
g
,
Then
x
˙
=
A
i
x
(
t
)
+
B
i
u
(
t
)
,
i
=
1
,
2
,
⋯
,
r
(1)
\begin{array}{l} \text{Rule } i: \\ \text{If } \mu_1(t) \text{ is } M_{i1}, \cdots, \text{ and } \mu_g \text{ is } M_{ig}, \\ \text{Then } \dot{\boldsymbol{x}} = A_i \boldsymbol{x} (t) + B_i \boldsymbol{u} (t), \quad i = 1, 2, \cdots, r \end{array} \tag{1}
Rule i:If μ1(t) is Mi1,⋯, and μg is Mig,Then x˙=Aix(t)+Biu(t),i=1,2,⋯,r(1)
其中,
r
r
r为模糊规则数,
M
i
j
(
j
=
1
,
⋯
,
g
)
M_{ij}(j = 1, \cdots, g)
Mij(j=1,⋯,g)为模糊集,
μ
1
(
t
)
,
⋯
,
μ
g
(
t
)
\mu_1(t), \cdots, \mu_g(t)
μ1(t),⋯,μg(t)为模糊规则的前件变量。通过单点模糊化、乘积推理和加权平均反模糊化方法,可得系统
(
1
)
(1)
(1)的全局模糊模型:
x
˙
(
t
)
=
∑
i
=
1
r
h
i
(
μ
(
t
)
)
(
A
i
x
(
t
)
+
B
i
u
(
t
)
)
i
=
1
,
2
,
⋯
,
r
(2)
\dot{\boldsymbol{x}}(t) = \sum_{i=1}^{r} h_i \left( \boldsymbol{\mu}(t) \right) \left( A_i \boldsymbol{x} (t) + B_i \boldsymbol{u} (t) \right) \quad i = 1, 2, \cdots, r \tag{2}
x˙(t)=i=1∑rhi(μ(t))(Aix(t)+Biu(t))i=1,2,⋯,r(2)
其中:
μ
(
t
)
=
[
μ
1
(
t
)
,
μ
2
(
t
)
,
⋯
,
μ
g
(
t
)
]
h
i
(
μ
(
t
)
)
=
ω
i
(
μ
(
t
)
)
∑
i
=
1
N
ω
i
(
μ
(
t
)
)
ω
i
(
μ
(
t
)
)
=
∏
j
=
1
g
M
i
j
(
μ
(
t
)
)
\begin{aligned} \boldsymbol{\mu}(t) &= \left[ \mu_1(t), \mu_2(t), \cdots, \mu_g(t) \right] \\ h_i(\boldsymbol{\mu} (t)) &= \frac{\omega_i \left( \boldsymbol{\mu}(t) \right)}{\sum_{i = 1}^N \omega_i \left( \boldsymbol{\mu}(t) \right)} \\ \omega_i \left( \boldsymbol{\mu}(t) \right) &= \prod_{j=1}^g M_{ij} \left( \boldsymbol{\mu}(t) \right) \end{aligned}
μ(t)hi(μ(t))ωi(μ(t))=[μ1(t),μ2(t),⋯,μg(t)]=∑i=1Nωi(μ(t))ωi(μ(t))=j=1∏gMij(μ(t))
规范化的模糊隶属度函数 h i ( μ ( t ) ) ≥ 0 h_i(\boldsymbol{\mu} (t)) \geq 0 hi(μ(t))≥0,且 ∑ i = 1 r h i ( μ ( t ) ) = 1 \sum_{i = 1}^r h_i(\boldsymbol{\mu} (t)) = 1 ∑i=1rhi(μ(t))=1。
针对基于T-S模糊模型的非线性系统的控制器设计问题,目前常用的方法未并行分布补偿法 (Parallel Distributed Compensation, PDC),即模糊控制器采用与式
(
1
)
(1)
(1)相同的模糊规则前件,并根据T-S模糊系统的每一个局部线性模型设计一个线性反馈控制律,全局控制输出就是每个独立控制律的模糊综合。PDC模糊控制器可以描述为:
Rule
i
:
If
μ
1
(
t
)
is
M
i
1
,
⋯
,
and
μ
g
is
M
i
g
,
Then
u
i
(
t
)
=
K
i
x
(
t
)
,
i
=
1
,
2
,
⋯
,
r
(3)
\begin{array}{l} \text{Rule } i: \\ \text{If } \mu_1(t) \text{ is } M_{i1}, \cdots, \text{ and } \mu_g \text{ is } M_{ig}, \\ \text{Then } \boldsymbol{u}_i (t)= K_i \boldsymbol{x} (t), \quad i = 1, 2, \cdots, r \end{array} \tag{3}
Rule i:If μ1(t) is Mi1,⋯, and μg is Mig,Then ui(t)=Kix(t),i=1,2,⋯,r(3)
其中,
K
i
K_i
Ki为需要设计的控制器分布补偿增益,则控制律
(
3
)
(3)
(3)的全局输出为:
u
(
t
)
=
∑
i
=
1
r
h
i
(
μ
(
t
)
)
K
i
x
(
t
)
i
=
1
,
2
,
⋯
,
r
(4)
\boldsymbol{u}(t) = \sum_{i=1}^{r} h_i \left( \boldsymbol{\mu}(t) \right) K_i \boldsymbol{x} (t) \quad i = 1, 2, \cdots, r \tag{4}
u(t)=i=1∑rhi(μ(t))Kix(t)i=1,2,⋯,r(4)
T-S模糊系统虽然与线性时变系统、不确定系统和切换系统等有很大相似之处,但其本质上是非线性动态系统。
解释1:这里面有几个下标:
i
i
i、
j
j
j和
g
g
g、
r
r
r。
r
r
r是模糊规则数,
i
i
i是模糊规则数集合中的元素,
g
g
g是前件变量数,
j
j
j是前件变量数集合中的元素。
解释2:书中的(1.3)式应该是错的,书中的向量变量都没有加粗,较容易混肴。
解释3:T-S模糊模型是用于拟合真实系统的,也是理解为对非线性系统的一种逼近,就像用神经网络逼近非线性系统一样。
二、模糊滑模控制[2]
简单模糊自适应滑模控制
简单的机械系统动力学方程:
{
x
˙
1
=
x
2
x
˙
2
=
f
(
x
)
+
u
(2.1)
\left \{ \begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= f(\boldsymbol{x}) + u \end{aligned} \right. \tag{2.1}
{x˙1x˙2=x2=f(x)+u(2.1)
其中, f ( x ) f(x) f(x)为未知函数。
位置指令为
x
d
x_d
xd,则误差及其变化率为:
{
e
=
x
1
−
x
d
e
˙
=
x
2
−
x
˙
d
(2.2)
\left \{ \begin{aligned} e &= x_1 - x_d \\ \dot{e} &= x_2 - \dot{x}_d \end{aligned} \right. \tag{2.2}
{ee˙=x1−xd=x2−x˙d(2.2)
定义滑模函数为:
s
=
c
e
+
e
˙
(2.3)
s = ce + \dot{e} \tag{2.3}
s=ce+e˙(2.3)
则:
s
˙
=
c
e
˙
+
e
¨
=
c
e
˙
+
x
˙
2
−
x
¨
d
=
c
e
˙
+
f
(
x
)
+
u
−
x
¨
d
\dot{s} = c \dot{e} + \ddot{e} = c \dot{e} + \dot{x}_2 - \ddot{x}_d = c \dot{e} + f(\boldsymbol{x}) + u - \ddot{x}_d
s˙=ce˙+e¨=ce˙+x˙2−x¨d=ce˙+f(x)+u−x¨d
如果 s → 0 s \rightarrow 0 s→0,则 e → 0 e \rightarrow 0 e→0,且 e ˙ → 0 \dot{e} \rightarrow 0 e˙→0。
模糊逼近原理
基于模糊系统的万能逼近原理,以
f
^
(
x
∣
θ
)
\hat{f}(\boldsymbol{x} | \boldsymbol{\theta})
f^(x∣θ)来逼近
f
(
x
)
f(\boldsymbol{x})
f(x)。针对模糊系统输入
x
1
x_1
x1和
x
2
x_2
x2分别设计5个模糊集,即取
n
=
2
n = 2
n=2,
i
=
1
,
2
i = 1, 2
i=1,2,
p
1
=
p
2
=
5
p_1 = p_2 = 5
p1=p2=5,则共有
p
1
×
p
2
=
25
p_1 \times p_2 = 25
p1×p2=25条模糊规则。
下面采用以下两个步骤构造模糊系统
f
^
(
x
∣
θ
)
\hat{f}(\boldsymbol{x} | \boldsymbol{\theta})
f^(x∣θ)。
步骤1:对变量
x
i
x_i
xi,定义
p
i
p_i
pi个模糊集合
A
i
l
i
(
l
i
=
1
,
2
,
3
,
4
,
5
)
A_i^{l_i}(l_i = 1, 2, 3, 4, 5)
Aili(li=1,2,3,4,5)。
步骤2:采用
∏
i
=
1
n
p
i
=
p
1
×
p
2
\prod_{i=1}^n p_i = p_1 \times p_2
∏i=1npi=p1×p2条模糊规则来构造模糊系统
f
^
(
x
∣
θ
)
\hat{f}(\boldsymbol{x} | \boldsymbol{\theta})
f^(x∣θ),第
j
j
j条模糊规则为:
R
(
j
)
:
IF
x
1
is
A
i
l
1
and
x
2
is
A
i
l
2
,
THEN
f
^
is
B
l
1
l
2
(2.4)
\begin{array}{l} R^{(j)}: \\ \text{IF } x_1 \text{ is } A_i^{l_1} \text{ and } x_2 \text{ is } A_i^{l_2}, \\ \text{THEN } \hat{f} \text{ is } B^{l_1 l_2} \end{array} \tag{2.4}
R(j):IF x1 is Ail1 and x2 is Ail2,THEN f^ is Bl1l2(2.4)
模糊推理过程如下:
(1)采用乘积推理机实现规则的前提推理,推理结果为
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
\prod_{i=1}^2 \mu_{A_i^{l_i}}(x_i)
∏i=12μAili(xi)。
(2)采用单值模糊器求
y
ˉ
f
l
1
l
2
\bar{\boldsymbol{y}}_f^{l_1 l_2}
yˉfl1l2,即隶属函数最大值所对应的横坐标值
(
x
1
,
x
2
)
(x_1, x_2)
(x1,x2)的函数值
f
(
x
1
,
x
2
)
f(x_1, x_2)
f(x1,x2)。
(3)采用乘积推理机实现规则前提与规则结论的推理,推理结果为:
y
ˉ
f
l
1
l
2
(
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
)
\bar{\boldsymbol{y}}_f^{l_1 l_2} \left( \prod_{i=1}^2 \mu_{A_i^{l_i}}(x_i) \right)
yˉfl1l2(i=1∏2μAili(xi))
对所有的模糊规则进行并运算,则模糊系统的输出为:
∑
l
1
=
1
5
∑
l
2
=
1
5
y
ˉ
f
l
1
l
2
(
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
)
\sum_{l_1 = 1}^5 \sum_{l_2 = 1}^5 \bar{\boldsymbol{y}}_f^{l_1 l_2} \left( \prod_{i=1}^2 \mu_{A_i^{l_i}}(x_i) \right)
l1=1∑5l2=1∑5yˉfl1l2(i=1∏2μAili(xi))
(4)采用平均解模糊器,得到模糊系统的输出为:
f
^
(
x
∣
θ
)
=
∑
l
1
=
1
5
∑
l
2
=
1
5
y
ˉ
f
l
1
l
2
(
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
)
∑
l
1
=
1
5
∑
l
2
=
1
5
(
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
)
(2.5)
\hat{f} (\boldsymbol{x} | \boldsymbol{\theta}) = \frac{\sum_{l_1 = 1}^5 \sum_{l_2 = 1}^5 \bar{\boldsymbol{y}}_f^{l_1 l_2} \left( \prod \limits_{i=1}^2 \mu_{A_i^{l_i}}(x_i) \right)}{\sum_{l_1 = 1}^5 \sum_{l_2 = 1}^5 \left( \prod_{i=1}^2 \mu_{A_i^{l_i}}(x_i) \right)} \tag{2.5}
f^(x∣θ)=∑l1=15∑l2=15(∏i=12μAili(xi))∑l1=15∑l2=15yˉfl1l2(i=1∏2μAili(xi))(2.5)
其中, μ A i l i ( x i ) \mu_{A_i^{l_i}}(x_i) μAili(xi)为 x i x_i xi的隶属函数。
令
y
ˉ
f
l
1
l
2
\bar{\boldsymbol{y}}_f^{l_1 l_2}
yˉfl1l2是自由参数,放在集合
θ
∈
R
(
25
)
\boldsymbol{\theta} \in R^{(25)}
θ∈R(25)中。引入模糊基向量
ξ
(
x
)
\boldsymbol{\xi} (\boldsymbol{x})
ξ(x),式
(
2.5
)
(2.5)
(2.5)变为:
f
^
(
x
∣
θ
)
=
θ
^
T
ξ
(
x
)
\hat{f} (\boldsymbol{x} | \boldsymbol{\theta}) = \boldsymbol{\hat{\theta}}^T \boldsymbol{\xi} (\boldsymbol{x})
f^(x∣θ)=θ^Tξ(x)
其中,
ξ
(
x
)
\boldsymbol{\xi} (\boldsymbol{x})
ξ(x)的第
l
1
l
2
l_1 l_2
l1l2个元素为:
ξ
(
x
)
=
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
∑
l
1
=
1
5
∑
l
2
=
1
5
(
∏
i
=
1
2
μ
A
i
l
i
(
x
i
)
)
(2.6)
\boldsymbol{\xi} (\boldsymbol{x}) = \frac{\prod_{i=1}^2 \mu_{A_i^{l_i}}(x_i)}{\sum_{l_1 = 1}^5 \sum_{l_2 = 1}^5 \left( \prod \limits_{i=1}^2 \mu_{A_i^{l_i}}(x_i) \right)} \tag{2.6}
ξ(x)=∑l1=15∑l2=15(i=1∏2μAili(xi))∏i=12μAili(xi)(2.6)
控制算法设计
设最优参数为:
θ
∗
=
arg
min
θ
∈
Ω
[
sup
x
∈
R
2
∣
f
^
(
x
∣
θ
)
−
f
(
x
)
∣
]
\boldsymbol{\theta}^* = \arg \min_{\boldsymbol{\theta} \in \boldsymbol{\Omega}} \left[ \sup_{\boldsymbol{x} \in R^2} | \hat{f} (\boldsymbol{x} | \boldsymbol{\theta}) - f (\boldsymbol{x}) | \right]
θ∗=argθ∈Ωmin[x∈R2sup∣f^(x∣θ)−f(x)∣]
其中, Ω \boldsymbol{\Omega} Ω为 θ \boldsymbol{\theta} θ的集合。
则
f
(
x
)
=
θ
∗
T
ξ
(
x
)
+
ε
f(\boldsymbol{x}) = \boldsymbol{\theta}^{*T} \boldsymbol{\xi}(\boldsymbol{x}) + \varepsilon
f(x)=θ∗Tξ(x)+ε
其中,
ε
\varepsilon
ε为模糊系统的逼近误差。令
f
(
x
)
−
f
^
(
x
)
=
θ
∗
T
ξ
(
x
)
+
ε
−
θ
^
T
ξ
(
x
)
=
−
θ
~
T
ξ
(
x
)
+
ε
f(\boldsymbol{x}) - \hat{f} (\boldsymbol{x}) = \boldsymbol{\theta}^{*T} \boldsymbol{\xi}(\boldsymbol{x}) + \varepsilon - \hat \boldsymbol{\theta} ^T \boldsymbol{\xi} (\boldsymbol{x}) = - \tilde \boldsymbol{\theta} ^T \boldsymbol{\xi} (\boldsymbol{x}) + \varepsilon
f(x)−f^(x)=θ∗Tξ(x)+ε−θ^Tξ(x)=−θ~Tξ(x)+ε
定义Lyapunov函数:
V
=
1
2
s
2
+
1
2
γ
θ
~
T
θ
~
(2.7)
V = \frac{1}{2} s^2 + \frac{1}{2 \gamma} \tilde \boldsymbol{\theta} ^T \tilde \boldsymbol{\theta} \tag{2.7}
V=21s2+2γ1θ~Tθ~(2.7)
其中, γ > 0 \gamma > 0 γ>0, θ ~ = θ ^ − θ ∗ \tilde \boldsymbol{\theta} = \hat \boldsymbol{\theta} - \boldsymbol{\theta}^{*} θ~=θ^−θ∗。
对式
(
2.7
)
(2.7)
(2.7)求导,得:
V
˙
=
s
s
˙
+
1
γ
θ
~
T
θ
~
˙
=
s
s
˙
+
1
γ
θ
~
T
θ
^
˙
=
s
(
c
e
˙
+
f
(
x
)
+
u
−
x
¨
d
)
+
1
γ
θ
~
T
θ
^
˙
\begin{aligned} \dot{V} &= s \dot{s} + \frac{1}{\gamma} \tilde \boldsymbol{\theta} ^T \dot{\tilde \boldsymbol{\theta}} \\ &= s \dot{s} + \frac{1}{\gamma} \tilde \boldsymbol{\theta} ^T \dot{\hat \boldsymbol{\theta}} \\ &= s \left( c \dot{e} + f(\boldsymbol{x}) + u - \ddot{x}_d \right) + \frac{1}{\gamma} \tilde \boldsymbol{\theta} ^T \dot{\hat \boldsymbol{\theta}} \end{aligned}
V˙=ss˙+γ1θ~Tθ~˙=ss˙+γ1θ~Tθ^˙=s(ce˙+f(x)+u−x¨d)+γ1θ~Tθ^˙
解释:此处对 θ ~ \tilde \boldsymbol{\theta} θ~求导时,把 θ ∗ \boldsymbol{\theta}^{*} θ∗当成了常数。
设计控制律为:
u
=
−
c
e
˙
−
f
^
(
x
)
+
x
¨
−
η
sgn
(
s
)
(2.8)
u = -c \dot{e} -\hat{f} (\boldsymbol{x}) + \ddot{x} - \eta \text{sgn} (s) \tag{2.8}
u=−ce˙−f^(x)+x¨−ηsgn(s)(2.8)
则
V
˙
=
s
(
c
e
˙
+
f
(
x
)
+
u
−
x
¨
d
)
+
1
γ
θ
~
T
θ
^
˙
=
s
(
f
(
x
)
−
f
^
(
x
)
−
η
sgn
(
s
)
)
+
1
γ
θ
~
T
θ
^
˙
=
s
(
−
θ
~
T
ξ
(
x
)
+
ε
−
η
sgn
(
s
)
)
+
1
γ
θ
~
T
θ
^
˙
=
ε
s
−
η
∣
s
∣
+
θ
~
T
(
1
γ
θ
^
˙
−
s
ξ
(
x
)
)
(2.9)
\begin{aligned} \dot{V} &= s \left( c \dot{e} + f(\boldsymbol{x}) + u - \ddot{x}_d \right) + \frac{1}{\gamma} \tilde \boldsymbol{\theta} ^T \dot{\hat \boldsymbol{\theta}} \\ &= s \left(f(\boldsymbol{x}) -\hat{f} (\boldsymbol{x}) - \eta \text{sgn} (s) \right) + \frac{1}{\gamma} \tilde \boldsymbol{\theta} ^T \dot{\hat \boldsymbol{\theta}} \\ &= s \left( - \tilde \boldsymbol{\theta} ^T \boldsymbol{\xi} (\boldsymbol{x}) + \varepsilon - \eta \text{sgn} (s) \right) + \frac{1}{\gamma} \tilde \boldsymbol{\theta} ^T \dot{\hat \boldsymbol{\theta}} \\ &= \varepsilon s - \eta |s| + \tilde \boldsymbol{\theta} ^T \left( \frac{1}{\gamma} \dot{\hat \boldsymbol{\theta}} - s \boldsymbol{\xi} (\boldsymbol{x}) \right) \end{aligned} \tag{2.9}
V˙=s(ce˙+f(x)+u−x¨d)+γ1θ~Tθ^˙=s(f(x)−f^(x)−ηsgn(s))+γ1θ~Tθ^˙=s(−θ~Tξ(x)+ε−ηsgn(s))+γ1θ~Tθ^˙=εs−η∣s∣+θ~T(γ1θ^˙−sξ(x))(2.9)
取
η
>
∣
ε
∣
max
\eta > |\varepsilon|_{\max}
η>∣ε∣max,自适应律取为:
θ
^
˙
=
γ
s
ξ
(
x
)
\dot{\hat \boldsymbol{\theta}} = \gamma s \boldsymbol{\xi} (\boldsymbol{x})
θ^˙=γsξ(x)
则 V ˙ = ε s − η ∣ s ∣ < 0 \dot{V} = \varepsilon s - \eta |s| < 0 V˙=εs−η∣s∣<0。
取 V ˙ ≡ 0 \dot{V} \equiv 0 V˙≡0,则 s ≡ 0 s \equiv 0 s≡0,根据LaSalle不变集原理, t → 0 t \rightarrow 0 t→0时, s → 0 s \rightarrow 0 s→0。
解释1:“取 η > ∣ ε ∣ max \eta > |\varepsilon|_{\max} η>∣ε∣max”,这里,模型误差需要估计,不能太大。