第一讲:轨道力学概述
引言
轨道力学是研究天体在引力作用下运动规律的学科,是航空航天工程的理论基础。本讲将从历史发展、基本概念和应用领域三个方面,为大家揭开轨道力学的神秘面纱。在这门课程中,我们将共同探索从古至今人类对天体运动的理解,以及如何将这些理解应用于现代航天器的设计和控制。
轨道力学的魅力在于它既有深厚的理论基础,又有广泛的工程应用。从卫星导航到深空探测,从国际空间站到火星移民计划,无一不与轨道力学密切相关。通过本课程的学习,你将能够理解卫星为何能长期稳定地环绕地球运行,航天器如何精确抵达遥远的行星,以及宇航员如何在太空中进行复杂的交会对接操作。
一、轨道力学的发展历史
1. 古代天文学的萌芽
人类对天体运动的观察和思考可以追溯到文明的起源。早在公元前3000年,古巴比伦人就开始记录天体的位置,古埃及人利用天文观测来预测尼罗河的泛滥。古希腊天文学家托勒密在公元2世纪提出了地心说模型,虽然这一模型在今天看来是错误的,但其复杂的本轮-均轮系统能够相当准确地预测行星位置,展现了古人对数学模型的精湛运用。
中国古代的天文观测同样卓有成就。《周髀算经》中记载了"土圭测影"的方法,可以测量地球的子午线长度。张衡发明的浑天仪是世界上最早的天文观测仪器之一,体现了东方天文学的独特贡献。
2. 日心说的革命
16世纪,波兰天文学家哥白尼在其著作《天体运行论》中提出了"日心说",这一理论主张太阳位于宇宙中心,地球和其他行星围绕太阳运行。这一观点挑战了持续近1500年的地心说,开启了天文学的"哥白尼革命"。然而,哥白尼仍然保留了某些古老观念,如认为行星轨道必须是完美的圆形。
3. 开普勒定律的发现
德国天文学家约翰内斯·开普勒(Johannes Kepler, 1571-1630)在分析其导师第谷·布拉赫(Tycho Brahe)长达数十年的精确天文观测数据时,特别是对火星轨道的研究,发现行星轨道并非完美的圆形,而是椭圆。经过艰苦的数学计算和逻辑推理,开普勒在1609年至1619年间发表了三条行星运动定律,奠定了现代轨道力学的基础。
开普勒第一定律:轨道形状定律
行星绕太阳运行的轨道是一个椭圆,太阳位于椭圆的一个焦点上。
这一定律打破了自古希腊以来"天体运动必须是圆周运动"的教条。在数学上,椭圆可以用极坐标方程表示为:
r = p 1 + e cos θ r = \frac{p}{1 + e\cos\theta} r=1+ecosθp
其中:
- r r r 是行星到太阳的距离
- θ \theta θ 是行星位置的真近点角
- p p p 是半通径, p = a ( 1 − e 2 ) p = a(1-e^2) p=a(1−e2)
- a a a 是椭圆轨道的半长轴
- e e e 是轨道的离心率, 0 ≤ e < 1 0 \leq e < 1 0≤e<1
当 e = 0 e = 0 e=0 时,轨道为完美的圆形;当 0 < e < 1 0 < e < 1 0<e<1 时,轨道为椭圆。地球轨道的离心率约为0.0167,所以接近圆形但略有扁平。
开普勒第二定律:面积速度定律
行星与太阳的连线在相等的时间内扫过相等的面积。
这一定律实际上是角动量守恒的体现。当行星距离太阳较近时,其线速度较大;距离太阳较远时,线速度较小。数学表达为:
d A d t = 1 2 r 2 θ ˙ = 常量 \frac{dA}{dt} = \frac{1}{2}r^2\dot{\theta} = \text{常量} dtdA=21r2θ˙=常量
其中 A A A 表示扫过的面积, θ ˙ \dot{\theta} θ˙ 表示角速度。这一定律告诉我们,行星的角动量 h = r 2 θ ˙ h = r^2\dot{\theta} h=r2θ˙ 在运动过程中保持不变。
开普勒第三定律:周期定律
行星绕太阳运行的周期的平方与其轨道半长轴的立方成正比。
数学表达为:
T 2 ∝ a 3 T^2 \propto a^3 T2∝a3
更精确地,对于质量为 m m m 的行星绕质量为 M M M 的太阳运行:
T 2 a 3 = 4 π 2 G ( M + m ) \frac{T^2}{a^3} = \frac{4\pi^2}{G(M+m)} a3T2=G(M+m)4π2
其中 G G G 是万有引力常数。由于太阳质量远大于行星质量,对于太阳系内的行星,上式可以近似为:
T 2 a 3 = 4 π 2 G M ⊙ \frac{T^2}{a^3} = \frac{4\pi^2}{GM_{\odot}} a3T2=GM⊙4π2
开普勒三大定律纯粹是基于观测数据总结出的经验规律,它准确描述了行星运动的几何特性,但没有解释背后的物理机制。这个问题直到牛顿出现才得到解答。
4. 牛顿万有引力定律
艾萨克·牛顿爵士(Sir Isaac Newton, 1643-1727)在其1687年出版的《自然哲学的数学原理》中提出了万有引力定律,为开普勒定律提供了理论基础。牛顿认为,宇宙中任何两个质点之间都存在相互吸引的引力,其大小:
- 正比于两个物体的质量乘积
- 反比于它们之间距离的平方
数学表达为:
F = G m 1 m 2 r 2 F = G\frac{m_1m_2}{r^2} F=Gr2m1m2
其中:
- F F F 是引力大小
- G G G 是万有引力常数,约为 6.67430 × 1 0 − 11 m 3 k g − 1 s − 2 6.67430 \times 10^{-11} m^3 kg^{-1} s^{-2} 6.67430×10−11m3kg−1s−2
- m 1 m_1 m1 和 m 2 m_2 m2 是两个物体的质量
- r r r 是两个物体间的距离
牛顿还发展了微积分并提出了著名的运动三定律,使得从万有引力定律出发,能够严格推导出开普勒的三大定律。这是物理学史上第一次用统一的数学形式描述天上和地上的运动,具有划时代的意义。
牛顿对二体问题的求解
牛顿利用他创立的微积分和力学定律,系统地研究了"二体问题"——两个在引力作用下相互运动的天体。当一个天体质量远大于另一个天体时(如太阳与行星),可简化为"限制性二体问题"。牛顿证明,在这种情况下,较小天体相对于较大天体的轨道必定是圆锥曲线的一种:椭圆、抛物线或双曲线。
考虑质量分别为 m m m 和 M M M 的两个天体,其位置矢量分别为 r ⃗ m \vec{r}_m rm 和 r ⃗ M \vec{r}_M rM,牛顿第二定律给出:
m d 2 r ⃗ m d t 2 = − G m M ∣ r ⃗ ∣ 2 r ⃗ ∣ r ⃗ ∣ m\frac{d^2\vec{r}_m}{dt^2} = -G\frac{mM}{|\vec{r}|^2}\frac{\vec{r}}{|\vec{r}|} mdt2d2rm=−G∣r∣2mM∣r∣r
M d 2 r ⃗ M d t 2 = G m M ∣ r ⃗ ∣ 2 r ⃗ ∣ r ⃗ ∣ M\frac{d^2\vec{r}_M}{dt^2} = G\frac{mM}{|\vec{r}|^2}\frac{\vec{r}}{|\vec{r}|} Mdt2d2rM=G∣r∣2mM∣r∣r
其中 r ⃗ = r ⃗ m − r ⃗ M \vec{r} = \vec{r}_m - \vec{r}_M r=rm−rM 是相对位置矢量。取系统的质心为原点,经过一系列数学变换,能够得到相对运动方程:
d 2 r ⃗ d t 2 = − μ r ⃗ r 3 \frac{d^2\vec{r}}{dt^2} = -\mu\frac{\vec{r}}{r^3} dt2d2r=−μr3r
其中 μ = G ( m + M ) \mu = G(m+M) μ=G(m+M) 称为引力参数。这个方程是轨道力学中最基本的方程之一,解析解即为圆锥曲线。
牛顿的成就在于,他不仅证明了开普勒定律,还表明这些定律只是理想情况下的近似,实际天体运动会受到其他因素的影响,如其他天体的引力摄动、非球形引力场等。这为后来的天体摄动论奠定了基础。
5. 拉格朗日与哈密顿力学
18-19世纪,约瑟夫·拉格朗日(Joseph-Louis Lagrange, 1736-1813)和威廉·罗文·哈密顿(William Rowan Hamilton, 1805-1865)等数学家将力学理论发展到了新高度。拉格朗日提出了以动能和势能的差(拉格朗日量)为基础的力学方程,哈密顿则发展了以相空间和哈密顿量为基础的力学体系。这些理论方法为处理复杂的多体问题提供了强大工具。
拉格朗日还发现了著名的拉格朗日点(L1至L5点),这些点是两个大质量天体系统中引力平衡的特殊位置,在现代空间任务设计中具有重要应用。
6. 现代轨道力学的发展
20世纪以来,随着计算技术的进步和空间探索的需求,轨道力学迅速发展为一门成熟的学科。现代轨道力学在以下几个方面取得了显著进展:
数值方法
电子计算机的出现使得复杂轨道的数值积分成为可能。现代轨道预报系统使用高阶数值积分算法,如Runge-Kutta法、Adams-Bashforth法等,能够高精度预测航天器轨道,同时考虑各种摄动力的影响。
摄动理论
现代摄动理论能够处理地球非球形引力场、大气阻力、太阳光压、第三体引力等多种摄动对轨道的影响。例如,J2摄动(地球赤道扁率导致的引力异常)会导致轨道升交点和近地点的漂移,这对极轨道和太阳同步轨道的设计至关重要。
轨道确定与导航
结合现代观测技术(如雷达、激光测距、GNSS等),轨道确定的精度得到极大提升。贝叶斯滤波、批处理最小二乘法等统计方法被广泛应用于轨道确定和导航系统中。
最优轨道设计
用于解决轨道转移和交会对接等问题的最优控制理论得到深入发展。借助间接法、直接配点法等技术,工程师能够设计出满足各种约束条件的最优轨道。
混沌动力学
非线性动力学理论的发展揭示了多体系统中的混沌现象,这对理解长期轨道演化和设计特殊任务轨道(如"弱稳定轨道")具有重要意义。
二、基本概念与术语
1. 轨道要素
轨道要素是描述航天器轨道的一组参数,通常需要六个独立参数才能完全确定一个轨道。最常用的是开普勒六要素(Keplerian Elements),包括:
轨道大小和形状参数
-
半长轴(Semi-major Axis, a a a):椭圆轨道的"长度"的一半,表征轨道的尺寸大小。对于圆轨道,半长轴等于轨道半径。
-
离心率(Eccentricity, e e e):表征轨道的形状。 e = 0 e = 0 e=0 为圆轨道; 0 < e < 1 0 < e < 1 0<e<1 为椭圆轨道; e = 1 e = 1 e=1 为抛物线轨道; e > 1 e > 1 e>1 为双曲线轨道。离心率也可以表示为:
e = r a − r p r a + r p e = \frac{r_a - r_p}{r_a + r_p} e=ra+rpra−rp
其中 r a r_a ra 是远地点距离, r p r_p rp 是近地点距离。
轨道方向参数
-
轨道倾角(Inclination, i i i):轨道平面与参考平面(通常是地球赤道平面)的夹角,范围为 0 ∘ 0^{\circ} 0∘ 至 18 0 ∘ 180^{\circ} 180∘。 i = 0 ∘ i = 0^{\circ} i=0∘ 表示赤道轨道, i = 9 0 ∘ i = 90^{\circ} i=90∘ 表示极轨道, 9 0 ∘ < i ≤ 18 0 ∘ 90^{\circ} < i \leq 180^{\circ} 90∘<i≤180∘ 表示逆行轨道。
-
升交点赤经(Right Ascension of Ascending Node, Ω \Omega Ω):从参考方向(通常是春分点方向)到轨道升交点(轨道从参考平面的南侧穿越到北侧的点)的角度,在参考平面内测量,范围为 0 ∘ 0^{\circ} 0∘ 至 36 0 ∘ 360^{\circ} 360∘。
轨道取向参数
- 近地点幅角(Argument of Perigee, ω \omega ω):从升交点到近地点的角度,在轨道平面内测量,范围为 0 ∘ 0^{\circ} 0∘ 至 36 0 ∘ 360^{\circ} 360∘。
航天器位置参数
- 真近点角(True Anomaly, θ \theta θ 或 ν \nu ν):从近地点到航天器当前位置的角度,在轨道平面内测量,范围为 0 ∘ 0^{\circ} 0∘ 至 36 0 ∘ 360^{\circ} 360∘。
除开普勒要素外,还有其他表示方法,如:
- 轨道矢量表示:包括位置矢量 r ⃗ \vec{r} r 和速度矢量 v ⃗ \vec{v} v
- 轨道根数:包括半通径 p p p、升交点经度 L L L 等变形的轨道要素
- 平根数:为避免奇异性而设计的一种轨道表示方法
2. 参考系统
轨道计算需要明确的参考系统,不同的参考系统适用于不同的计算目的。
惯性参考系
惯性参考系是不受加速度影响的参考系统,是牛顿运动定律适用的参考系。在轨道力学中,常用的惯性参考系包括:
-
地心惯性系(Earth-Centered Inertial, ECI):原点位于地球质心,z轴指向地球自转轴北端,x轴指向春分点(黄道与赤道的交点),y轴按右手系补充完成。这一系统虽然跟随地球绕太阳运动,但在短期内可视为惯性系。
-
日心黄道系(Heliocentric Ecliptic):原点位于太阳质心,参考平面为地球轨道平面(黄道面),用于行星际轨道计算。
-
从J2000.0历元开始的惯性系:为避免岁差和章动的影响,常采用J2000.0历元(2000年1月1日12时)的天球坐标系作为标准惯性参考系。
旋转参考系
旋转参考系通常跟随天体的自转而运动,适合表示与天体固连的特征。
-
地心地固系(Earth-Centered Earth-Fixed, ECEF):原点位于地球质心,z轴指向地球自转轴北端,x轴指向本初子午线(格林威治)与赤道的交点,y轴按右手系补充完成。该系统随地球自转,适合表示地面站位置。
-
轨道系(Orbital Frame):原点位于航天器,轴向根据轨道特征定义,如R(径向)-T(切向)-N(法向)系统,适合描述相对运动。
-
本体系(Body Frame):原点位于航天器质心,轴向与航天器本体固连,适合描述姿态和控制。
坐标变换
不同参考系之间的转换涉及坐标变换矩阵。例如,从ECI系统到ECEF系统的变换:
r ⃗ E C E F = [ R 3 ( ω E t ) ] r ⃗ E C I \vec{r}_{ECEF} = [R_3(\omega_E t)] \vec{r}_{ECI} rECEF=[R3(ωEt)]rECI
其中 R 3 ( ω E t ) R_3(\omega_E t) R3(ωEt) 是绕z轴旋转角度 ω E t \omega_E t ωEt 的旋转矩阵( ω E \omega_E ωE 是地球自转角速度, t t t 是时间):
R 3 ( ω E t ) = [ cos ( ω E t ) sin ( ω E t ) 0 − sin ( ω E t ) cos ( ω E t ) 0 0 0 1 ] R_3(\omega_E t) = \begin{bmatrix} \cos(\omega_E t) & \sin(\omega_E t) & 0 \\ -\sin(\omega_E t) & \cos(\omega_E t) & 0 \\ 0 & 0 & 1 \end{bmatrix} R3(ωEt)= cos(ωEt)−sin(ωEt)0sin(ωEt)cos(ωEt)0001
更复杂的变换,如考虑岁差、章动的高精度变换,通常需要多个旋转矩阵的连乘。
3. 时间系统
轨道力学计算高度依赖精确的时间系统。不同的时间系统适用于不同的应用场景:
力学时间系统
-
世界时(Universal Time, UT):基于地球自转的时间系统,分为UT0、UT1、UT2等变种。
-
协调世界时(Coordinated Universal Time, UTC):现代社会使用的标准时间,基于原子钟但通过闰秒与UT1保持接近。
-
国际原子时(International Atomic Time, TAI):基于原子钟的均匀时间尺度,与UTC的关系为:UTC = TAI - 闰秒累计值。
天文时间系统
-
恒星时(Sidereal Time):以地球相对于恒星的旋转为基础的时间系统,一个恒星日约为23小时56分4秒。
-
儒略日(Julian Date, JD):从公元前4713年1月1日12时开始的连续天数,便于长期天文计算。
-
修正儒略日(Modified Julian Date, MJD):MJD = JD - 2400000.5,起始于1858年11月17日0时。
动力学时间系统
-
地球时(Terrestrial Time, TT):在地球表面使用的理论上均匀的时间尺度。
-
地心坐标时(Geocentric Coordinate Time, TCG):在地心坐标系中使用的时间尺度,考虑相对论效应。
-
太阳系质心坐标时(Barycentric Coordinate Time, TCB):在太阳系质心坐标系中使用的时间尺度,考虑相对论效应。
轨道计算时,需要在不同时间系统之间进行转换。例如,将UTC转换为儒略日的公式为:
J D = 367 Y − INT ( 7 ( Y + INT ( ( M + 9 ) / 12 ) ) / 4 ) + INT ( 275 M / 9 ) + D + 1721013.5 + U T 24 JD = 367Y - \text{INT}(7(Y+\text{INT}((M+9)/12))/4) + \text{INT}(275M/9) + D + 1721013.5 + \frac{UT}{24} JD=367Y−INT(7(Y+INT((M+9)/12))/4)+INT(275M/9)+D+1721013.5+24UT
其中Y是年份,M是月份,D是日期,UT是小时。
4. 轨道能量与周期
轨道能量是理解轨道特性的重要参数。对于二体问题,单位质量的轨道能量为:
ε = v 2 2 − μ r \varepsilon = \frac{v^2}{2} - \frac{\mu}{r} ε=2v2−rμ
其中 v v v 是速度大小, r r r 是到中心天体的距离, μ \mu μ 是引力参数。
对于椭圆轨道,轨道能量与半长轴直接相关:
ε = − μ 2 a \varepsilon = -\frac{\mu}{2a} ε=−2aμ
轨道周期 T T T 可以从半长轴计算:
T = 2 π a 3 μ T = 2\pi\sqrt{\frac{a^3}{\mu}} T=2πμa3
这正是开普勒第三定律的精确表达。
对于地球轨道,我们可以定义圆形轨道速度:
v c i r c = μ r v_{circ} = \sqrt{\frac{\mu}{r}} vcirc=rμ
以及逃逸速度:
v e s c = 2 μ r = 2 ⋅ v c i r c v_{esc} = \sqrt{\frac{2\mu}{r}} = \sqrt{2} \cdot v_{circ} vesc=r2μ=2⋅vcirc
当航天器速度达到逃逸速度时,轨道能量为零,轨道形状为抛物线;当速度超过逃逸速度时,轨道能量为正,轨道形状为双曲线。
三、轨道力学的应用领域
轨道力学的理论成果广泛应用于现代航天技术的各个领域。从设计满足特定任务需求的轨道,到实现航天器的精确控制,轨道力学都是不可或缺的理论基础。
1. 卫星技术
卫星是最重要的航天应用之一,不同用途的卫星需要不同类型的轨道:
通信卫星
通信卫星通常采用地球静止轨道(Geostationary Earth Orbit, GEO),这种轨道具有以下特点:
- 高度约35,786公里
- 轨道周期恰好为一个恒星日(约23小时56分4秒)
- 轨道倾角为0°(赤道轨道)
- 相对地面静止,始终覆盖同一区域
地球静止轨道的轨道半径可以从同步条件导出:
r G E O = μ ω E 2 3 r_{GEO} = \sqrt[3]{\frac{\mu}{\omega_E^2}} rGEO=3ωE2μ
其中 ω E \omega_E ωE 是地球自转角速度。
除地球静止轨道外,中轨道(MEO)卫星星座如北斗、GPS等全球导航卫星系统,以及低轨道(LEO)的通信星座如Starlink、OneWeb等都是通信卫星的重要应用。这些星座的设计需要考虑全球覆盖、最小卫星数量、延迟时间等多重因素,是轨道设计的经典问题。
星座设计中的"Walker星座"是一种系统化的设计方法,通常表示为Walker-δ(t/p/f),其中t是卫星总数,p是轨道平面数,f是相位因子。例如,GPS星座接近于Walker-δ(24/6/1)构型。
地球观测卫星
地球观测卫星通常使用低地球轨道(Low Earth Orbit, LEO),高度在160-2000公里之间。为了实现对地球表面的系统性观测,常采用太阳同步轨道(Sun-synchronous Orbit, SSO):
- 轨道倾角较大(通常97°-99°)
- 升交点赤经每天向东移动约1°,与太阳视运动同步
- 使卫星在同一地方总是在相同的当地时间通过,保证光照条件一致
太阳同步轨道的设计利用了地球赤道扁率(J2项)导致的升交点进动效应。要实现太阳同步,轨道设计需满足:
Ω ˙ = − 3 n J 2 R E 2 2 a 2 ( 1 − e 2 ) 2 cos i = ω ⊙ \dot{\Omega} = \frac{-3n J_2 R_E^2}{2a^2(1-e^2)^2}\cos i = \omega_{\odot} Ω˙=2a2(1−e2)2−3nJ2RE2cosi=ω⊙
其中 Ω ˙ \dot{\Omega} Ω˙ 是升交点赤经变化率, n n n 是轨道平均运动, J 2 J_2 J2 是地球重力场的带谐系数(约为0.00108263), R E R_E RE 是地球半径, ω ⊙ \omega_{\odot} ω⊙ 是太阳视运动角速度(约为0.9856°/天)。给定轨道高度,可以求解出实现太阳同步的轨道倾角。
对于需要反复观测同一地区的任务,重复轨道(Repeat-Ground-Track Orbit)是重要选择。在重复轨道中,卫星经过若干圈后会精确回到地面同一点上方。设计重复轨道需要轨道周期与地球自转周期满足特定的有理数比关系:
T o r b i t T d a y = m n \frac{T_{orbit}}{T_{day}} = \frac{m}{n} TdayTorbit=nm
其中 m m m 是天数, n n n 是轨道圈数。例如,"16天/233圈"的重复轨道在16个恒星日内完成233圈,然后精确回到初始地面轨迹。
导航卫星
全球导航卫星系统(GNSS)如GPS、GLONASS、北斗和伽利略系统,通常采用中地球轨道(Medium Earth Orbit, MEO),高度在18,000-23,000公里之间。这些系统采用精心设计的星座构型,以确保全球任何位置至少能看到4颗卫星(三维定位所需最小数量)。
以GPS为例,其标准星座由6个轨道平面、每平面4颗卫星组成,轨道高度约20,200公里,轨道周期约12小时,轨道倾角约55°。这种设计在全球范围内提供了良好的几何分布和信号可见性。
导航卫星轨道设计面临的主要挑战包括:提供全球覆盖、优化卫星几何分布(以降低定位误差)、保持星座构型稳定性等。
2. 行星探测
探索太阳系其他天体是人类空间探索的重要任务,轨道力学为行星际任务提供了理论基础:
行星转移轨道
从地球到其他行星的转移通常使用霍曼转移轨道(Hohmann Transfer Orbit)。这是一种椭圆轨道,起点切于内轨道(如地球轨道),终点切于外轨道(如火星轨道)。霍曼转移具有以下特点:
- 在理想情况下(圆形共面轨道间转移)是能量最优的转移方式
- 转移时间较长(如地火转移约9个月)
- 发射和到达时机受行星相对位置约束,形成"发射窗口"
霍曼转移所需的总速度变化(ΔV)可计算为:
Δ V t o t a l = Δ V 1 + Δ V 2 \Delta V_{total} = \Delta V_1 + \Delta V_2 ΔVtotal=ΔV1+ΔV2
其中:
Δ V 1 = μ r 1 ( 2 r 2 r 1 + r 2 − 1 ) \Delta V_1 = \sqrt{\frac{\mu}{r_1}} \left( \sqrt{\frac{2r_2}{r_1+r_2}} - 1 \right) ΔV1=r1μ(r1+r22r2−1)
Δ V 2 = μ r 2 ( 1 − 2 r 1 r 1 + r 2 ) \Delta V_2 = \sqrt{\frac{\mu}{r_2}} \left( 1 - \sqrt{\frac{2r_1}{r_1+r_2}} \right) ΔV2=r2μ(1−r1+r22r1)
r 1 r_1 r1 和 r 2 r_2 r2 分别是初始和目标轨道半径。
对于实际的行星际任务,由于行星轨道的离心率和倾角,通常需要修正霍曼转移,采用连接轨道(Porkchop Plot)分析来确定最佳发射时机。
引力助推
引力助推(Gravity Assist)是深空探测任务中的关键技术,利用行星引力场改变航天器速度和轨道,节省推进剂。这一技术原理基于动量守恒:航天器从行星获得或失去动量,而行星由于质量巨大,其轨道几乎不受影响。
在行星中心参考系中,引力助推前后航天器速度大小不变(假设为双曲线飞越),但方向发生改变。飞越偏转角 δ \delta δ 与飞越参数 p p p 和双曲线离心率 e e e 相关:
δ = 2 arcsin 1 e = 2 arctan μ p v ∞ 2 \delta = 2 \arcsin \frac{1}{e} = 2 \arctan \frac{\mu}{pv_{\infty}^2} δ=2arcsine1=2arctanpv∞2μ
其中 v ∞ v_{\infty} v∞ 是无穷远处相对速度(称为"超速")。
在太阳参考系中,引力助推会改变航天器的速度大小。若航天器从行星后方接近(顺向飞越),速度增加;若从前方接近(逆向飞越),速度减小。最大速度增量:
Δ V m a x ≈ 2 v p sin ( δ 2 ) \Delta V_{max} \approx 2 v_p \sin \left( \frac{\delta}{2} \right) ΔVmax≈2vpsin(2δ)
其中 v p v_p vp 是行星绕太阳的轨道速度。
著名的"旅行者"号、"伽利略"号、"卡西尼"号等深空探测器都利用多次引力助推抵达外行星,大大节省了推进剂。
拉格朗日点任务
在三体系统(如太阳-地球-航天器)中,存在五个引力平衡点,称为拉格朗日点(L1至L5)。其中L1、L2和L3位于三体连线上,L4和L5与主要两体形成等边三角形。
拉格朗日点在现代航天任务中有重要应用:
- L1点(位于地球与太阳之间,距地球约150万公里):适合太阳观测任务,如SOHO卫星
- L2点(位于地球背向太阳方向,距地球约150万公里):适合深空观测,如詹姆斯·韦伯空间望远镜
- L4/L5点(太阳-地球系统中位于地球轨道上,与地球相距60°):潜在的小行星聚集区和未来空间站位置
拉格朗日点附近的运动是非线性的,通常需要轨道维持策略。特别是在L1/L2点附近,航天器可以设计在"晕轨道"(Halo Orbit)或"李萨如轨道"(Lissajous Orbit)上运行,这些是三体问题的特殊周期或准周期解。
3. 载人航天
载人航天任务对轨道设计有特殊要求,包括安全性、可靠性和舒适性:
空间站轨道
国际空间站(ISS)和中国空间站采用低地球轨道,典型高度为340-420公里。这种轨道选择考虑了多种因素:
- 辐射环境相对温和,有利于宇航员长期驻留
- 发射和返回地球相对容易
- 通信延迟小
- 地球观测条件良好
空间站轨道面临的主要挑战是大气阻力导致的轨道衰减,需要定期进行轨道维持机动。ISS的轨道衰减率约为每天100-150米,需要每2-3个月进行一次"重提升"(Reboost)。
空间站轨道的衰减可以近似模拟为:
d h d t = − ρ v A C D 2 m \frac{dh}{dt} = -\frac{\rho v A C_D}{2m} dtdh=−2mρvACD
其中 h h h 是轨道高度, ρ \rho ρ 是大气密度, v v v 是轨道速度, A A A 是有效横截面积, C D C_D CD 是阻力系数, m m m 是航天器质量。
交会对接
载人航天任务中,航天器需要与空间站或其他航天器进行交会对接。交会对接过程通常分为几个阶段:
- 远程接近:从数百公里外开始接近目标
- 近程接近:在数公里范围内精确控制相对运动
- 对接:最后几十米的精确对准和接触
在近距离交会过程中,常用希尔方程(Hill’s Equations)或Clohessy-Wiltshire方程描述相对运动:
x
¨
−
2
n
y
˙
−
3
n
2
x
=
a
x
\ddot{x} - 2n\dot{y} - 3n^2x = a_x
x¨−2ny˙−3n2x=ax
y
¨
+
2
n
x
˙
=
a
y
\ddot{y} + 2n\dot{x} = a_y
y¨+2nx˙=ay
z
¨
+
n
2
z
=
a
z
\ddot{z} + n^2z = a_z
z¨+n2z=az
其中 ( x , y , z ) (x,y,z) (x,y,z) 是相对位置坐标(x沿径向,y沿切向,z沿轨道法向), n n n 是目标航天器的平均运动, ( a x , a y , a z ) (a_x,a_y,a_z) (ax,ay,az) 是控制加速度。
在交会设计中,常用的轨道机动包括霍曼转移(调整轨道高度)和CW瞄准(控制接近轨迹)。这些机动需要精确的相对导航信息和控制系统。
应急轨道
载人航天任务还需考虑各种应急情况下的轨道设计,如发射中止轨道(Launch Abort Trajectory)和应急返回轨道。这些轨道设计优先考虑宇航员安全,需要在各种故障情况下提供可靠的返回选项。
4. 空间碎片与避碰
随着太空活动的增加,空间碎片问题日益严重,轨道力学在碎片监测和避碰中发挥重要作用:
碎片演化模型
空间碎片在轨道上的长期演化受多种摄动力影响,主要包括:
- 大气阻力:导致轨道高度降低,最终再入大气层
- J2摄动:导致升交点和近地点漂移
- 太阳辐射压:影响小质量碎片的轨道
- 第三体引力:影响高轨道碎片的长期演化
通过这些摄动模型,可以预测碎片云的长期演化,为碎片减缓策略提供依据。
碰撞概率计算
计算两个航天物体的碰撞概率通常采用以下方法:
- 预测两物体的最近接近点(Time of Closest Approach, TCA)
- 建立相对运动坐标系(B平面)
- 考虑位置不确定性,计算碰撞概率
假设两个航天物体的位置误差服从正态分布,碰撞概率可以表示为二维正态分布的积分:
P c = 1 2 π σ x σ y ∬ ∣ r ∣ ≤ R exp ( − x 2 2 σ x 2 − y 2 2 σ y 2 ) d x d y P_c = \frac{1}{2\pi\sigma_x\sigma_y} \iint_{|r|\leq R} \exp\left(-\frac{x^2}{2\sigma_x^2}-\frac{y^2}{2\sigma_y^2}\right) dx dy Pc=2πσxσy1∬∣r∣≤Rexp(−2σx2x2−2σy2y2)dxdy
其中 R R R 是两物体的合并半径, σ x \sigma_x σx 和 σ y \sigma_y σy 是相对位置误差的标准差。
避碰策略
当碰撞概率超过阈值(通常为1/10,000),需要执行避碰机动。避碰策略通常考虑:
- 最小燃料消耗
- 保持任务轨道特性
- 不造成新的高风险接近事件
避碰机动通常选择在碰撞点之前数小时执行,常用的机动方式包括轨道抬升/降低、平面内速度脉冲等。
总结与展望
本讲介绍了轨道力学的基本概念、历史发展和应用领域。从古代天文学的朴素观察,到开普勒定律的归纳,再到牛顿力学的理论框架,轨道力学经历了从经验到理论的飞跃。现代轨道力学作为一门成熟的学科,已成为航天活动的理论基础。
轨道力学的应用几乎涵盖了所有航天活动,包括卫星技术、行星探测、载人航天等。随着空间技术的发展,新的应用不断涌现,如空间旅游、小行星采矿、行星际运输等,这些都将需要轨道力学的理论支持。
未来轨道力学的发展趋势包括:
- 高精度轨道预报:考虑更多摄动力和非线性效应
- 低推力轨道优化:适应电推进等新技术的轨道设计
- 自主轨道确定:减少地面站支持,提高航天器自主性
- 轨道智能规划:应用人工智能技术优化轨道设计
- 可持续空间利用:结合空间交通管理,设计可持续轨道
轨道力学将继续在人类探索太空的伟大征程中发挥基础性作用。通过对轨道力学原理的深入理解和创新应用,我们将能够更高效、更安全地开发和利用太空资源,推动人类文明向太空延伸。
思考题
-
推导开普勒第三定律与牛顿万有引力定律的关系。
-
计算地球表面的第一宇宙速度和第二宇宙速度。
-
设计一个太阳同步轨道,高度为800公里,要求当地时间为上午10:30。
-
分析地球静止轨道的稳定性,并解释为什么地球静止卫星需要东西位置保持控制。
-
讨论低地球轨道的空间碎片问题,并提出可能的解决方案。
-
分析轨道能量与轨道周期之间的数学关系,并讨论这一关系在轨道设计中的应用。
-
拉格朗日点L1、L2和L3是线性不稳定的,而L4和L5是条件稳定的。请解释这种稳定性差异的物理原因,并分析其对航天任务设计的影响。
-
比较地球静止轨道与太阳同步轨道的特点,并分析各自在实际应用中的优缺点。
-
评估大气阻力、太阳辐射压和地球非球形引力场这三种主要摄动力对不同高度卫星轨道的相对影响大小。
-
讨论轨道共振现象在轨道设计中的利与弊,并举例说明如何利用或避免共振。
-
探讨引力助推技术的物理原理,并分析其在节省燃料方面的定量效果。举例说明历史上采用多次引力助推的深空探测任务。
-
分析近地小行星的轨道特性,讨论小行星撞击地球的风险评估方法和可能的防御策略。
习题
-
计算题:地球绕太阳运行的轨道离心率为0.0167,求地球到太阳的最近距离和最远距离。(已知地球轨道半长轴约为1.496×10^8公里)
-
计算题:某卫星在近地点高度为300公里,远地点高度为800公里的椭圆轨道上运行,求该卫星的轨道周期。
-
计算题:计算地球静止轨道的半径和周期。
-
轨道转移题:某航天器需要从200公里高的圆轨道转移到500公里高的圆轨道,使用霍曼转移,计算所需的总速度增量。
-
摄动分析题:分析月球引力对近地轨道卫星的摄动效应大小,并与J2摄动效应进行比较。
-
轨道设计题:某卫星在600公里高的圆轨道上运行,计算其轨道周期和轨道速度。若此卫星为太阳同步轨道,求其轨道倾角。
-
地面观测题:一颗通信卫星位于地球静止轨道上,其地面投影点在东经100度。计算从北京(北纬40度,东经116度)观测该卫星时的仰角和方位角。
-
轨道维持题:国际空间站的轨道高度约为400公里,轨道倾角为51.6度。估算由于大气阻力造成的轨道衰减率,并计算一次"重提升"机动需要的速度增量。
-
行星际转移题:某航天器在地球与火星之间进行霍曼转移,假设两颗行星轨道为圆轨道且共面,求转移所需的总速度增量和转移时间。(地球轨道半径为1天文单位,火星轨道半径为1.524天文单位)
-
逃逸速度题:计算在月球表面的第一宇宙速度和第二宇宙速度。(月球质量为地球质量的1/81,月球半径为地球半径的0.273)
-
轨道参数题:某卫星位于半长轴为26,600公里、离心率为0.74的大椭圆轨道上。计算该卫星的近地点和远地点高度,以及在近地点和远地点的速度。
-
碰撞风险题:假设一颗卫星在轨道高度1000公里处以1千米每秒的相对速度与一个10厘米直径的空间碎片发生最近接近。若两者位置的协方差矩阵已知,计算其碰撞概率。
参考文献
-
Vallado, D. A. (2013). Fundamentals of Astrodynamics and Applications (4th ed.). Microcosm Press.
-
Bate, R. R., Mueller, D. D., & White, J. E. (1971). Fundamentals of Astrodynamics. Dover Publications.
-
Prussing, J. E., & Conway, B. A. (2012). Orbital Mechanics (2nd ed.). Oxford University Press.
-
Battin, R. H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series.
-
Chobotov, V. A. (2002). Orbital Mechanics (3rd ed.). AIAA Education Series.
-
Curtis, H. D. (2020). Orbital Mechanics for Engineering Students (4th ed.). Butterworth-Heinemann.