整流十五—网侧低频电流谐波抑制方法及其稳定性分析

本文深入探讨了三相PWM整流器网侧电流谐波的产生原因,包括死区效应、驱动信号谐波和电网电压谐波,并提出基于余弦内模控制的低频电流谐波抑制方法。在负载变化时,死区效应不再是唯一决定网侧电流THD的因素,驱动信号和电网电压谐波的影响不容忽视。通过采用余弦内模控制,能够在负载变化特别是轻载时有效降低网侧电流THD,提高系统稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.网侧电流谐波产生原因分析

根据经验,三相 PWM 整流器的负载越轻,其网侧电流 THD 越大,波形质量越差。当大量整流器并联在电网同一公共点上并经常非满载运行时,对电网的谐波污染不可忽视。
例如三相 PWM 整流器应用在电动汽车集中充电站时,通常是十几台甚至几十台设备并联运行,由于电动汽车充电过程中有相当长一部分时间处在恒压限流的非满功率状态,导致公共点处的电流 THD 较大。
目前的研究一般认为死区效应是产生网侧电流谐波的原因,然而,这无法解释轻载时 THD 更大的现象,也导致现有的谐波抑制方法,如死区补偿等,在轻载时并不能很好地抑制网侧电流谐波。为了更彻底地抑制网侧电流谐波,有必要全面分析三相 PWM 整流器网侧电流谐波的产生原因。
此处分析用空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)的电压电流双闭环方法作为三相 PWM 整流器的基本控制方案,与正弦波脉宽调制(Sine-wave Pulse Width Modulation, SPWM)相比,SVPWM 具有控制算法简单、数字化实现方便、电压利用率高、谐波成分少等优点。
拓扑结构
在这里插入图片描述
公式:
在这里插入图片描述
vao——a 相桥臂中点对电网中性点的电压(V)
在这里插入图片描述
忽略电网电压所含谐波,由式(2-1)可知,网侧电流 ia 所含任意次谐波与电压 vao 的相应次谐波具有一一对应关系,即分析电压 vao 的谐波情况,便可通过式(2-1)进而求得网侧电流的各次谐波含量。
对于图 2-1 所示的主电路结构,电压 vao 的开关函数表达式为
在这里插入图片描述
由式(2-2)可知,在忽略母线电压 vdc 波动时,电压 vao 的谐波取决于开关函数 sj。其中,开关函数 sj 由 PWM 驱动信号和死区时间共同作用所产生。根据以上分析,结合图 2-1 和图 2-2,可以得到如图 2-3 所示的网侧电流谐波形成示意图。从图可以看出,死区效应、电网电压谐波和驱动信号中的谐波,是形成三相 PWM 整流器网侧电流谐波的原因。
在这里插入图片描述

1.1.死区效应对网侧电流的影响

为了防止桥式 SVPWM 变换器上下桥臂直通,通常需要在同一桥臂的上下两个开关管的驱动信号中加入死区时间。死区效应的存在会导致桥臂输出电压存在一定的偏差,当图 2-2 所示的三相 PWM 整流器处于单位功率因数运行状态时,死区效应示意图如图 2-4 所示。
在这里插入图片描述
死区偏差电压 vtd 可以表示为
在这里插入图片描述
由上式可知,死区时间的存在既改变了桥臂输出电压的基波大小,又带来了一定量的奇次谐波,通常被认为是网侧电流含有低频谐波的最主要原因。

根据式(2-1),可以得到由死区效应引起的网侧电流各次谐波有效值 Ik 的表达式
在这里插入图片描述
式中 Vtdk——死区偏差电压 vtd 各次谐波分量的幅值(V)。
联立式(2-3)、(2-4),可得网侧电流各次谐波有效值 Ik 与死区时间 Td 的关系
在这里插入图片描述
讨论在负载变化时输入电流基波幅值的变化情况。假设变换器处于单位功率因数整流状态,忽略输入侧谐波功率,忽略变流器损耗,在负载变化的前后,根据输入输出功率平衡关系有
在这里插入图片描述
据上式可知,在 E 不变的前提下,I1 与 Po 成正比关系。结合式(2-5)、(2-6)以及网侧电流 THD 的定义
在这里插入图片描述
可知,如果认为死区时间是决定网侧电流谐波的唯一因素,那么网侧电流 THD应与输出功率成反比。据此画出理论上输出功率与网侧电流 THD 之间的关系,如图 2-5 中的理论数据曲线所示,同时根据实际测量数据,做出实验数据曲线。其中,Po 为输出功率。
在这里插入图片描述
显然,在负载较重时,理论数据与实际数据接近,即说明此时死区效应的确是决定网侧电流 THD 的最主要原因;但是,随着负载的变轻,理论与实际数据差距越来越大,说明此时死区效应只是产生网侧电流谐波的部分原因,驱动信号谐波和电网电压谐波等因素不能再被忽略。

1.2驱动信号对网侧电流的影响

首先考虑采样电流中无谐波时的情况。SVPWM 等效调制波可以描述为
在这里插入图片描述
不考虑死区时间,a 相桥臂开关信号也即驱动信号 sa 的表达式为
在这里插入图片描述
根据傅里叶级数原理,sa 可以分解为关于时间变量 x(t)和 y(t)的傅里叶级数形式
在这里插入图片描述
将 t-v 坐标系下的 SVPWM 原理图转换到 x-y 坐标系下,如图 2-6 所示。
在这里插入图片描述
为简化傅里叶系数求解过程将 sa 下移 1 得到 sa-1,可以得到 sa-1 的双重傅里叶级数形式
在这里插入图片描述
式中各次谐波系数表达式如式(2-13)所示,其中
在这里插入图片描述
在这里插入图片描述
进一步分析,当考虑采样电流中的谐波时,调制波中会含有相应次数的谐波,导致驱动信号 sa 中额外含有一定量的谐波。需要说明的是,由于电流环带宽有限,且通常低于变换器的开关频率 fs,故采样电流中的高次谐波会被严重衰减,故只需考虑采样电流中的低频谐波即可。
以 k(k=5,7,11,13,17,19)次谐波为例进行分析。假设网侧电流中含有三相对称的次谐波,其幅值为 Ak,a 相相位角在正弦三角函数下相对于电流基波为 φk,则该谐波电流可以表示为
在这里插入图片描述
通过图 2-2、图 2-3 可以看出,该谐波电流经过 Clark 变换、Park 变换、电流环 PI 调节、iPark 坐标变换等环节,导致调制波中含有与之相对应的 k 次谐波 vsk,其表达式为
在这里插入图片描述
该谐波分量经过与峰峰值为1/2fs的三角波比较,再经过双重傅里叶级数分解,得到采样电流谐波所引起的 vao 中的 k 次谐波分量 vaok 为
在这里插入图片描述
需要说明的是,根据双重傅里叶级数分解结果,还可以得到一些开关频率附近以及开关频率整数倍频率附近的谐波,由于本文主要讨论的是 20 次(1kHz)以内的低频谐波,而 PWM 整流器的开关频率一般为 10kHz 以上,因此不对这些高频谐波展开研究。
由式(2-15)、(2-16)可以看出,只要网侧电流中有谐波,经采样后采样电流中便含有谐波,这就必然导致驱动信号中含有谐波,从而又影响网侧电流的谐波含量。简单来说,驱动信号中的谐波既受网侧电流影响,又反过来影响着网侧电流。

1.3电网电压谐波对网侧电流的影响

在分析网侧电流谐波的形成原因时,为了方便,通常认为电网电压条件是理想的。实际上,公用电网总是存在一定程度上的畸变,包括电网电压谐波,三相电压不平衡等。通常情况下,电网电压不平衡程度较小,且可以通过微调三相电压的采样系数来减轻其对变换器的影响,故在此主要考虑电网电压谐波对网侧电流的影响。
当电网电压含有谐波时,根据图 2-1 可知,不只是 ea,eb,ec 中含有谐波,由于电网电压被采样后进入控制回路,导致 d-q 坐标系下的 ed,eq 不再是直流量,也含有坐标变换后的相应次谐波,进而导致驱动信号中含有电网电压谐波引起的谐波分量。
假设电网电压含有 k 次谐波,其表达式为
在这里插入图片描述
类比于 2.2.1.2 中分析采样电流谐波所造成的驱动信号谐波的方法,参考式(2-14)~(2-16),可以得到电网电压谐波所造成的 vao 中的谐波分量vaok(t)‘为
在这里插入图片描述
联立式(2-1)、(2-17)、(2-18),可以得出 a 相电网电压 k 次谐波幅值 Eak 和其产生的 a 相输入电流 k 次谐波有效值 Iaek 的关系
在这里插入图片描述
根据上式即可算出电网电压谐波所造成的网侧电流谐波含量。

二.基于余弦内模控制的低频电流谐波抑制方法

经过以上分析可知,网侧电流谐波由多个谐波源构成,并且各个谐波源互相影响,存在耦合关系,例如当负载变化时,各谐波源所产生的谐波比例也会相应发生变化,仅仅使用死区补偿等方法并不能很好地降低网侧电流 THD。为此,提出一种余弦内模控制方法,可以有针对性地消除网侧电流低频谐波,在负载变化,尤其是轻载时,有效降低网侧电流 THD。
以一个如图 2-7 所示的单位负反馈系统来说明当控制器满足内模原理时,可以抵消特定频率的正余弦扰动信号(即特定次谐波。在图 2-7 中,R(s)为输入信号,D(s)为扰动信号,E(s)为误差信号,Y(s)为输出信号,N s ()/D s ( )为包含控制器和被控对象的系统开环传递函数。
为方便分析,令 R(s)=0。若扰动信号为幅值为 A、角频率为 ω 的余弦信号
在这里插入图片描述
在这里插入图片描述
若图 2-7 中的控制器符合内模原理,那么系统开环传递函数中必然包括能产生扰动信号的模型,即
在这里插入图片描述
对于 SVPWM 变换器而言,网侧电流典型谐波为 5 次负序、7 次正序、11次负序、13 次正序、17 次负序、19 次正序等,经过坐标变换到同步旋转坐标系下变为 6 次、12 次、18 次等 6 的整数倍次谐波。据此设计电流环余弦内模控制器如图 2-8 所示。应用于控制系统中时,只需将图 2-2 中的虚线框部分替换为图 2-8 即可。相比于 PI 控制,增加的余弦内模控制器传递函数为
在这里插入图片描述
为了不占用过多的控制系统资源,选取 h=6,12,18,便可以抑制网侧电流 20次以内典型谐波,明显改善网侧电流 THD。Ks 越大,变换器对低频谐波的抑制作用越强;但是随着 Ks 的增大,电流环闭环极点更接近虚轴,变换器的稳定裕度变小。由于 PWM 整流器在重载时网侧电流 THD 较低,此时选取较小的 Ks即可;在轻载时,为使网侧电流 THD 不超出规定范围,应选取较大的 Ks。在单位功率因数运行的 PWM 整流器中,d 轴电流 id 代表输入功率的大小,因此,可设定参数调整规则为

在这里插入图片描述重点:电流环由pi控制和余弦内膜控制两部分组成。不失一般性,理解为电流环中加入补偿量。和重复控制类似,其也是基于内膜控制。

三.采用余弦内模控制时的稳定性约束条件

余弦内模控制器的加入能够使网侧电流 THD 有效降低,但是会对变换器的稳定性造成一定的影响。原本在传统 PI 控制中使变换器稳定运行的参数可能已经不再适用于余弦内模控制系统,因此需要对三相 PWM 整流器的稳定性进行重新分析,探究采用余弦内模控制时的稳定性约束条件。

根据图 2-1 列写出三相电压型 PWM 整流器的状态方程
在这里插入图片描述
在认为三相电网平衡的前提下,列写三相电压型 PWM 整流器在三相静止abc 坐标系下的数学模型为
在这里插入图片描述
通过等量坐标变换,可以得到整流器在两相静止坐标系(即 αβ 坐标系)下的数学模型为
在这里插入图片描述
坐标变换矩阵为
在这里插入图片描述
将式(2-30)变换为两相旋转坐标系(即 d-q 坐标系)下的数学模型为
在这里插入图片描述
根据图 2-8 所示的控制器结构,以 h=6 为例,并引入状态变量 x1,x2,x3,x4,x5,x6,x7,进一步得到采用余弦内模控制时的电流环状态方程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
根据式(2-41)~(2-46)便可以求出雅可比矩阵在平衡点处的特征根 λ1, λ2, …,λ10。根据李亚普诺夫稳定性理论,雅可比矩阵在平衡点处的所有特征根的实部Re(λ)小于零时,系统稳定。以电流环控制参数 Kip 和 Ks 为变量,将表 2-1 中的
各项参数带入式(2-41)~(2-46),可以得到特征根实部的最大值 Re(λ) max 的分布情况,如图 2-9 所示。
在这里插入图片描述
根据上述李亚普诺夫稳定理论,当 Re(λ) max<0 时,便可判断整流器此时是李亚普诺夫稳定的。据此便可以得到关于电流环控制参数 Kip 和 Ks 的稳定域,如图 2-9 中网格区域所示。该稳定域为电流环控制器参数设计提供了基于稳定性考虑的约束条件。
在这里插入图片描述

### 关于射频发射机中二次谐波抑制方法及其原因分析 #### 1. 谐波的定义与影响 在射频系统中,谐波是指由基频信号整数倍组成的频率分量。其中,二次谐波是基频信号两倍频率的成分[^1]。如果未有效抑制这些谐波,它们可能会干扰相邻频道或其他通信系统的正常运行。 #### 2. 二次谐波产生的主要原因 二次谐波通常是由非线性器件引起的,例如功率放器(PA)、混频器和其他有源元件。当这些设备处于高电平操作状态时,其输出可能包含显著的二次谐波分量[^5]。具体来说: - **功率放器的非线性特性**:PA的工作区域可能导致输入信号失真,从而产生额外的谐波。 - **电路设计缺陷**:不恰当的设计参数或布局也可能加剧这种现象。 #### 3. 解决方法 为了减少甚至消除二次谐波的影响,可以采取以下几种策略: ##### (a) 使用高质量滤波器 安装专门针对特定频率范围优化的带通或低通滤波器能够有效地移除不需要的高频成分,包括二次谐波。例如,在某些应用场合下会部署三阶谐波陷波器(Notch Filter),它特别擅长衰减指定次数的谐波能量而不影响主要载波信号的质量。 ##### (b) 改善功放效率并降低驱动水平 通过调整偏置条件或者选用更高效的晶体管结构来改善功率放器的整体性能,进而减轻由于过度饱和而导致的规模谐波生成问题[^2]。适当降低输入激励强度同样有助于缓解这一状况。 ##### (c) 实施负反馈机制 引入适当的负反馈回路可以帮助定整个系统的增益响应曲线,并且进一步压缩任何潜在存在的畸变产物——即那些不必要的高次谐波项[^3]。 ```python def harmonic_suppression(gain, feedback_factor=0.1): """ A simple model demonstrating the effect of negative feedback on reducing harmonics. Parameters: gain (float): Initial amplifier gain without feedback. feedback_factor (float): Proportion of output signal fed back to input. Returns: float: Effective gain after applying feedback. """ effective_gain = gain / (1 + feedback_factor * abs(gain)) return effective_gain ``` 上述代码片段展示了一个简化版模型,说明如何利用负反馈降低实际获得的有效增益值,间接起到削弱谐波的作用。 ##### (d) 设计合理的匹配络 精心规划阻抗转换过程中的每一个环节至关重要,因为良好的匹配不仅可以提高传输效率还能最限度地避免反射效应所引发的新一轮非理想行为模式再现出来形成新的谐波来源[^4]。 --- #### 总结 综上所述,通过对硬件选型、软件算法以及整体架构层面做出相应改进措施之后,完全可以达到预期效果即成功抑制住来自各个方向上的各种形式各异却殊途同归指向同一个目标—那就是尽可能彻底清除掉存在于我们宝贵资源当中却又毫无价值可言还经常捣乱破坏秩序定的讨厌家伙们啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Not Dr.Wang422

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值