点云里程计经典文献总结


一、激光定位

1.A-LOAM :Lidar 里程计和实时映射的简单部署

1.代码:github

A-LOAM 是 LOAM 的高级实现(J. Zhang 和 S. Singh. LOAM: Lidar Odometry and Mapping in Real-time),它使用 Eigen 和 Ceres Solver 简化代码结构。该代码是从 LOAM 和 LOAM_NOTED 修改而来的。代码结构简洁明了,没有复杂的数学推导和冗余操作,是 SLAM 初学者的良好学习材料。

在这里插入图片描述

2.F-LOAM :快速激光雷达里程计和测绘

代码:github
原文:原文

摘要:同时定位与地图构建(SLAM)在自主驾驶和无人机等机器人应用中具有广泛的应用。计算效率和定位精度对一个良好的 SLAM 系统至关重要。现有的基于 LiDAR 的 SLAM 工作通常将问题分为两个模块:扫描到扫描的匹配和扫描到地图的优化。这两个模块的解决方案都需要进行迭代计算,计算成本较高。在本文中,我们提出了一种通用解决方案,旨在为基于 LiDAR 的 SLAM提供一个计算效率高且准确的框架。具体来说,我们采用一种非迭代的两阶段畸变补偿方法,以降低计算成本。对于每个扫描输入,边缘和平面特征分别提取并匹配到局部边缘图和局部平面图,同时考虑局部平滑性以进行迭代姿态优化。我们进行了全面的实验,以评估该方法在具有挑战性的场景中的表现,包括对仓库自动引导车(AGV)的定位和在自主驾驶公共数据集上的测试。所提出的方法在公共数据集评估中实现了具有竞争力的定位精度,处理速度超过10 Hz,为实际应用提供了性能和计算成本之间的良好权衡。它是 KITTI 数据集中排名最准确和最快的开源 SLAM 系统之一。

在这里插入图片描述

3.CT-ICP :闭环实时弹性激光雷达测距

代码:github
原文:原文

摘要——多束 LiDAR传感器在机器人领域的应用日益增加,特别是在自主汽车的定位和感知任务中,这两者都依赖于构建精确环境地图的能力。为此,我们提出了一种新的实时 LiDAR 专用里程计方法,称为 CT-ICP(连续时间 ICP),并通过一种新颖的回环检测程序将其完善为完整的 SLAM方法。该方法的核心在于引入了扫描匹配中的连续性和扫描之间的不连续性。它允许在配准过程中对扫描进行弹性畸变,以提高精度,同时增强对来自不连续性的高频运动的鲁棒性。我们在此里程计的基础上构建了一个完整的 SLAM,使用基于高程图像的 2D 匹配的快速纯 LiDAR 回环检测,提供了带有回环约束的姿态图。为了展示该方法的鲁棒性,我们在七个数据集上进行了测试:KITTI、KITTI-raw、KITTI-360、KITTI-CARLA、ParisLuco、Newer College 和 NCLT,涵盖驾驶和高频运动场景。CT-ICP 里程计和回环检测均已在线发布。目前,CT-ICP在提供公共代码的系统中位居 KITTI 里程计排行榜第一,平均相对位移误差(RTE)为 0.59%,在单线程 CPU 上每次扫描的平均时间为60 毫秒。

在这里插入图片描述
图 1:上方,彩色显示一幅 LiDAR 扫描;颜色取决于每个点的时间戳(从最旧的蓝色到最新的红色)。扫描通过在扫描开始和结束时对两个姿态的联合优化以及根据时间戳进行插值,弹性变形以与地图(白点)对齐,从而创建了连续时间的扫描到地图的里程计。下方则是我们轨迹的表述,其中扫描内姿态连续,而扫描之间存在不连续性。

4.DLO:在密集点云快速定位(2022)

代码:代码
原文:原文

摘要——在感知挑战性环境中的野外机器人需要快速且准确的状态估计,但现代 LiDAR传感器很快会使现有的里程计算法不堪重负。为此,本文提出了一种轻量级的前端 LiDAR里程计解决方案,旨在为计算能力有限的机器人平台提供一致且准确的定位。我们的直接 LiDAR里程计(DLO)方法包含多个关键的算法创新,优先考虑计算效率,并能够使用密集、经过最小预处理的点云实时提供准确的姿态估计。这是通过一种新颖的关键帧系统实现的,该系统有效管理历史地图信息,并结合自定义的迭代最近点求解器,以快速进行点云配准并回收数据结构。与当前的最先进方法相比,我们的方法在计算开销更低的情况下更为准确,并已在多种感知挑战性环境中进行了广泛评估,适用于航空和四足机器人,这也是NASA JPL CoSTAR 团队为 DARPA 地下挑战进行的研究和开发工作的一部分。

在这里插入图片描述
图 1. 快速轻量级 LiDAR 里程计。团队 CoSTAR 的两个计算资源有限的机器人平台。(A)我们的定制四旋翼平台,顶部配备 Ouster OS1 LiDAR 传感器。(B)一款波士顿动力 Spot 机器人,装载了定制负载和带保护罩的 Velodyne VLP-16。(C)使用我们轻量级里程计方法在这些机器人进行 DARPA 地下挑战测试和集成时,映射的石灰岩矿的俯视图。

5.kiss-ICP :简单有效的激光里程计(2023)

代码:github
原文:原文

摘要——机器人平台的鲁棒且精确的姿态估计,即基于传感器的里程计,是许多机器人应用中的重要组成部分。尽管许多传感器里程计系统通过增加自运动估计过程的复杂性取得了进展,我们则采取相反的方向。通过去除大部分组件并专注于核心要素,我们获得了一个令人惊讶的高效系统,该系统易于实现,并可在不同环境条件下与多种 LiDAR 传感器配合使用。我们的里程计估计方法依赖于点对点 ICP,结合了自适应阈值匹配、鲁棒核函数、一个简单但广泛适用的运动补偿方法以及点云的子采样策略。该方法生成的系统仅包含少数参数,且大多数情况下无需针对特定 LiDAR 传感器进行调整。我们的系统在各种运行条件下表现与最新方法相当,且在不同平台(如汽车平台、无人机操作、赛格威车辆或手持式 LiDAR)中均使用相同参数。我们无需集成 IMU 数据,仅依赖于来自多种 3D LiDAR传感器的三维点云,从而支持广泛的应用和运行条件。我们开源的系统在所有展示的数据集中运行速度快于传感器的帧率,并专为真实场景设计。
在这里插入图片描述
图 1:我们提出的里程计流程在不同数据集上生成的点云地图(蓝色),使用相同的一组参数。最新的扫描以黄色表示。扫描使用不同的传感器记录,具有不同的点密度、不同的朝向和不同的拍摄模式。汽车示例来自 MulRan 数据集 [15]。Voxgraph 数据集 [23] 中的无人机和 NCLT 数据集 [5] 中使用的赛格威机器人展示了高加速度的运动特征。手持的 Livox LiDAR [17] 具有与常用的旋转机械 LiDAR 完全不同的拍摄模式。

6.ICP-Flow:使用 ICP 进行 LiDAR 场景流估计(2024)

代码:github
原文原文

场景流描述了由自主车辆在相邻时间步捕获的两个 LiDAR扫描之间的三维运动。现有的方法将场景流视为点wise无约束流向量,这些向量可以通过大规模预训练或在推理时的耗时优化进行学习。然而,这些方法并未考虑到自主驾驶中的物体通常是刚性移动的。我们将这一刚性运动假设融入到设计中,目标是将扫描中的物体关联起来,然后估计局部的刚性变换。我们提出了 ICP-Flow,一种无学习的流估计器。我们设计的核心是传统的迭代最近点(ICP)算法,它在时间上对物体进行对齐,并输出相应的刚性变换。重要的是,为了辅助ICP,我们提出了一种基于直方图的初始化方法,发现最可能的平移,从而为 ICP 提供良好的起始点。完整的场景流随后从刚性变换中恢复。我们在 Waymo 数据集上的表现优于最先进的基线,包括监督模型,并在 Argoverse-v2 和 nuScenes上表现出色。此外,我们训练了一个前馈神经网络,以我们模型生成的伪标签作为监督,并在所有能够进行实时推理的模型中取得最佳表现。我们验证了我们的模型在具有更长时间间隔(最长可达 0.4 秒)的场景流估计中的优势,而其他模型无法提供有意义的结果。

在这里插入图片描述
图 1. 场景流的 ICP。给定两个 LiDAR 扫描,我们去除地面,聚类点,并使用 ICP 对聚类进行对齐,因为物体是刚性移动的。我们推导每对聚类的刚性变换,从中可以恢复场景流。此外,我们使用模型的预测作为监督,训练一个前馈网络。该网络实时运行,性能损失微乎其微。
在这里插入图片描述

7.Traj-LO: 利用有效的连续时间轨迹实现(2024)

代码:代码
原文:原文

LiDAR 里程计是众多机器人应用中的关键组成部分。然而,目前的仅基于 LiDAR 的方法在激烈情况下表现较差。与专注于通过额外的惯性传感器提高精度的主流方法不同,本文展示了通过连续时间视角,LiDAR足以实现类似的能力。首先,将 LiDAR 的测量视为在不同时间连续捕获的流式点。其次,LiDAR的运动通过一个简单但有效的连续时间轨迹进行参数化。因此,我们提出的名为 Traj-LO 的方法可以通过紧密结合 LiDAR 点的几何信息和轨迹平滑性的运动学约束,恢复 LiDAR 的时空一致运动。该框架可推广到不同类型的 LiDAR 以及多 LiDAR 系统。在公共数据集上的大量实验验证了我们提出的仅基于 LiDAR 的方法的鲁棒性和有效性,即使在运动状态超出 IMU测量范围的情况下也能表现良好。

在这里插入图片描述
上面的图显示了室内场景(a)在加速度超过 IMU 测量范围 3G 的情况下的映射结果。橙色线是 LiDAR 轨迹。(b)在如此快速的运动中,摄像头传感器完全模糊。(d)FAST-LIO [7] 显著漂移(c),而我们的方法在仅使用 LiDAR 的情况下仍然有效。

在这里插入图片描述
轨迹 T(t) 显示了激光雷达在时间间隔 [t0, tk) 上的连续移动。底部是一个范围图像[5],它是由一个64线激光雷达在360°的圆形运动中收集的点云。只有同一列中的点是同时测量的。

8. I2EKF-LO:2024IROS开源, 基于双迭代扩展卡尔曼滤波的激光雷达里程计

代码:github
原文:原文

摘要:激光雷达里程计是自动驾驶和自主移动机器人领域的关键技术。然而,当前的大多数工作集中在非线性优化方法上,使用传统的迭代扩展卡尔曼滤波(IEKF)框架来解决问题仍然存在许多挑战:IEKF仅在观测方程上迭代,依赖于初始状态的粗略估计,这不足以完全消除输入点云中的运动失真;在复杂运动的状态估计中,系统过程噪声难以确定;以及不同传感器载体之间的运动模型变化。为了解决这些问题,我们提出了基于双迭代扩展卡尔曼滤波的激光雷达里程计(I2EKF-LO)。这种方法不仅在观测方程上迭代,还利用状态更新来迭代减轻激光雷达点云中的运动失真。此外,它根据先前预测的置信水平动态调整过程噪声,并为不同的传感器载体建立运动模型,以实现准确高效的状态估计。全面的实验表明,I2EKF-LO在激光雷达里程计领域达到了卓越的精度和计算效率水平。
在这里插入图片描述
图1. 在 HIT-TIB 数据集(步行序列)中 I 2 I^{2} I2 EKF-LO 的映射结果。当 I 2 I^{2} I2 EKF-LO 仅在观测过程上迭代时,它退化为普通的 IEKF-LO。与 IEKF-LO 相比, I 2 I^{2} I2 EKF-LO 在细节处理上表现更好。而 KISS-ICP 在使用相同分辨率的情况下,在这个序列上完全失败了。

在这里插入图片描述
系统概览:
系统架构如图 I 所示。EKF-LO 根据传感器载体的类型构建了一个统一的运动模型,作为系统状态的预测先验。根据运动的强度,可能需要将传入的点云分割成帧。利用 I 2 I^{2} I2 EKF,系统迭代消除点云中的运动失真,识别点到平面的匹配关系,并构建点到平面的距离残差。此外,基于对统一运动假设的信心,它动态调整过程噪声,最后整合先验来更新状态。点云使用后验状态注册到世界坐标系中,并使用增量式 k-d 树[20]进行管理。

9. Light-LOAM: 基于图匹配的轻量级激光雷达里程计和地图构建

摘要:
代码:github
原文:原文

将SLAM应用于机器人应用中,可靠性和效率是两个最受重视的特性。本文考虑在计算能力有限的平台上实现可靠的基于激光雷达的SLAM功能。首先与大多数选择点云配准的显著特征的方法相反,我们提出了一种非显著特征选择策略,以提高可靠性和鲁棒性。然后使用两阶段对应选择方法来配准点云,其中包括基于KD树的粗匹配,然后是一种基于图的匹配方法,它使用几何一致性来排除不正确的对应关系。此外提出了一种里程计方法,其中权重优化是由前述的几何一致性图的投票结果引导的。通过这种方式,激光雷达里程计的优化迅速收敛,评估出一个相当准确的变换结果,从而使后端模块能够高效完成地图任务。最后,我们在KITTI测距数据集和实际环境中评估了我们提出的框架。实验表明,与主流的基于激光雷达的SLAM解决方案相比,我们的SLAM系统在精度方面达到了相对水平或更高水平,同时在计算效率上取得了更好的平衡。

在这里插入图片描述

我们在图2中展示了Light-LOAM SLAM系统的流程图,该系统由三个核心阶段组成:预处理、两阶段特征匹配和姿态估计。

在预处理阶段,我们首先从每个点云扫描中过滤掉不连通的点。为了选择具有微小局部几何属性的稳定角点和平面特征,我们采用了一种不显眼的选择方法,并过滤掉了最显著的角点和平面特征。这是与其他方法[12],[15],[21]的主要区别之一。接下来进行两阶段特征匹配过程。在第一阶段,采用基于KD树的方法[21]来为选定的特征建立初始对应关系。然后,我们引入基于图的相容性投票机制来评估这些对应关系,有效地过滤掉不可靠的关联。进入前端里程计模块后,可靠点对的一致性得分被用来优化变换,从而得到初步的、相对精确的姿态估计。最后,在这些初步可靠估计的支持下,映射模块以更高效的方式优化出更精确的姿态。

10. GenZ-ICP:使用自适应加权的通用且稳健的LiDAR里程

论文:网址
代码:github

摘要——基于激光雷达(LiDAR)的里程计因其高精度的测距能力和对环境光条件的免疫性,已被广泛应用于姿态估计。然而,激光雷达里程计的性能会因环境的不同而变化,并且在退化环境中,如长走廊中,性能会下降。这一问题源于对单一误差度量的依赖,该度量在不同几何特征的环境中具有不同的优缺点。为了解决这些问题,本研究提出了一种新的迭代最近点(ICP)方法,称为GenZ-ICP。我们重新审视了点到平面和点到点的误差度量,并提出了一种方法,以互补的方式利用它们的优势。此外,通过利用基于周围环境几何特征调整的自适应权重,增强了对多样化环境的适应性。正如我们的实验评估所展示的,所提出的GenZ-ICP在各种环境中表现出高度的适应性,并在类似走廊的退化场景中对优化退化具有很强的抵抗力,通过防止优化过程中出现病态问题。

在这里插入图片描述
本研究提出以下三个关键主张:

  • (i) 我们的方法在一般环境中与最先进的激光雷达里程计方法表现相当。
  • (ii) 与依赖单一误差度量的最先进方法相比,它在退化环境中(如长走廊)表现出更优越的性能
  • (iii) 它防止了优化过程中数学上不明确的问题,从而在类似走廊的退化情况下对优化退化具有抵抗力。”
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值