【成像】【6】太赫兹光学——理想光学系统的高斯波束传输

前言

高斯光束~~


         \;\\\;\\\;

太赫兹光学

100 G H z ∼ 10 T H z = 1 0 ′ 000 G H z 100GHz\sim 10THz=10'000GHz 100GHz10THz=10000GHz

3 m m ∼ 30 μ m 3mm\sim 30 \mu m 3mm30μm (一百倍)

有的说是 300 G H z ∼ 3 T H z ( 1 m m ∼ 100 μ m ) 300GHz\sim3THz(1mm\sim 100\mu m) 300GHz3THz1mm100μm(十倍)

这一没被开发过的电磁频谱被称为太赫兹空隙

宇宙大爆炸大多数辐射频率都在太赫兹空隙中
——到达地球被水蒸气吸收

   \;
不同于传统光学

太赫兹辐射常常被当做自由空间波束进行传输和分析

太赫兹光束直径可能只有几个波长,而且衍射效应也更加明显

  • 对于可见光而言,波长对于器件和波束尺寸来说微不足道
  • 用于无线电和微波系统的物理光学,虽然准确但是计算速度慢,效率低
  • 大部分情况用高斯波束模型分析太赫兹

         \;\\\;\\\;

理想光学系统中的高斯波束传输

高斯波束建模最初为了处理激光束传播的问题

这是基于电磁场传播模型的技术

也适用于无法忽略衍射效应的小型光学系统(准光学系统)

简单高斯波束模型

高斯波束模型就是傍轴近似波动方程的解
——模型分布形式,比如光强 I I I分布,不随传播变化

假设有一个单色空间,相干波束准平行传播,这样的傍轴光束有明确的传播方向,在有限的横向范围内进行定义(比如非无限平面波)

则,复杂电场E分量满足时间独立的波动方程

∇ 2 E + k 2 E = 0 , k = ω / c = 2 π / λ \nabla^2E + k^2 E = 0 \qquad , \quad k=\omega/c=2\pi/\lambda 2E+k2E=0,k=ω/c=2π/λ

我们只求z方向传播的傍轴近似解

这类波束x,y方向上的振幅在数个波长内逐渐变化,z方向的变换由 e − j k z e^{-jkz} ejkz决定

E ( x , y , z ) = u ( x , y , z ) e − j k z E(x,y,z)=u(x,y,z)e^{-jkz} E(x,y,z)=u(x,y,z)ejkz

∇ 2 u − 2 j k ∂ u ∂ z = 0 \nabla^2 u - 2 jk\frac{\partial u}{\partial z} = 0 2u2jkzu=0

u ( x , y , z ) u(x,y,z) u(x,y,z)只能随z变化在多个波长内缓慢变化
∣ ∂ 2 u ∂ z 2 ∣ ≪ ∣ k ∂ u ∂ z ∣ \left| \frac{\partial ^2 u}{\partial z^2} \right| \ll \left| k\frac{\partial u}{\partial z} \right| z22ukzu

         \;\\\;\\\;

1.傍轴波动方程

产生傍轴波动方程(描述了u在x,y(横向)和z(轴向)方向的变化)

∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 − 2 j k ∂ u ∂ z = 0 \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} - 2 j k \frac{\partial u}{\partial z} = 0 x22u+y22u2jkzu=0

得到一个u的解
u ( x , y , z ) = u 0 q 0 + z e x p ( − j k ( x 2 + y 2 ) 2 ( q 0 + z ) ) u(x,y,z)= \frac{u_0}{q_0 + z} exp({- j \frac{k(x^2+y^2)}{2(q_0 + z)}}) u(x,y,z)=q0+zu0exp(j2(q0+z)k(x2+y2))

其中 u 0 , q 0 u_0,q_0 u0q0为常数

  1. z = 0 z=0 z=0,有 q 0 = j k W 0 2 / 2 q_0 = jkW_0^2/2 q0=jkW02/2
    —— q 0 q_0 q0是纯虚数,所以 u ∝ e x p ( − x 2 + y 2 W 0 2 ) u\propto exp(- \dfrac{x^2 + y^2}{W_0^2}) uexp(W02x2+y2)
    此时是一个高斯形式的密度谱,振幅波束半径 W 0 W_0 W0包含1/e 和 平面相前?
  2. 当波传播到 z ≠ 0 z\ne 0 z=0,有u中指数项的 ( x 2 + y 2 ) (x^2+y^2) (x2+y2)既有实部又有虚部,离轴横向距离取平方?

可以获得球面波前的傍轴近似

E G ( x , y ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

念心科道尊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值