一、技术原理与核心创新
生成式小波模型通过小波多尺度分解与扩散模型的迭代去噪机制深度融合,在保持高保真度的同时,显著提升对极端工况(如超临界雷诺数湍流、低光照图像、高维3D形状生成)的外推能力。其核心原理包括:
1. 小波多尺度分解的物理意义
- 频域特征分离:通过离散小波变换(DWT)将输入信号分解为低频(近似分量)和高频(细节分量),例如在图像中,低频对应全局光照与色彩,高频对应纹理与边缘细节。
- 稀疏表示:高频小波系数的能量集中特性(如90%能量集中于前10%系数),使模型能聚焦关键细节,降低冗余计算量。
- 跨尺度泛化:小波基函数的多分辨率特性允许模型在不同尺度间传递信息,增强对未见工况的适应能力。
2. 扩散模型的迭代细化机制
- 渐进去噪:扩散模型通过逐步去除噪声(从 T T T到 0 0 0时间步)生成数据,其马尔可夫链结构天然适合多阶段细节优化。
- 物理约束嵌入:在损失函数中引入守恒方程残差项(如Navier-Stokes方程),强制生成场满足物理规律,减少外推误差。
3. 融合优势
- 速度-质量平衡:小波分解减少扩散步数(如从1000步降至50步),同时高频分支的局部分析保持细节精度(SSIM>0.99)。
- 外推鲁棒性:通过小波域正则化(如系数截断)抑制噪声放大,避免极端工况下的模式崩溃。
二、模型架构设计
1. 双分支生成架构
graph TD
A[输入X] --> B[小波分解]
B --> C[低频分支:扩散模型]
B --> D[高频分支:小波预测网络]
C --> E[低频重构]
D --> E
E --> F[输出X']
- 低频分支:采用传统扩散模型(如DDPM)处理近似分量,学习全局结构。
- 高频分支:设计轻量级卷积网络(如U-Net变体)直接预测细节系数,跳过迭代去噪过程,加速推理3-5倍。
- 动态融合门:通过注意力机制自适应加权各尺度贡献,例如在熔池模拟中,高温区域赋予高频分支更高权重。
2. 外推增强策略
-
多尺度物理约束:在损失函数中分层嵌入PDE残差,例如对低频分量施加质量守恒,对高频分量施加动量守恒:
L = ∥ G ( X ) − Y ∥ 2 + λ 1 ∥ N S