腾讯混元3D生成大模型“ Hunyuan3D-1.0”正式开源

腾讯公司近日宣布,其最新的MoE模型“混元Large”以及混元3D生成大模型“Hunyuan3D-1.0”已正式开源,供企业及开发者免费下载并商用。

腾讯混元3D生成大模型是业界首个同时支持文字、图像生成3D的开源大模型,首批开源模型包含轻量版和标准版,轻量版能在10秒内生成高质量3D资产。该模型已在技术社区公开发布,包含模型权重、推理代码、模型算法等完整模型,可供开发者、研究者等各类用户免费使用。

在这里插入图片描述

腾讯混元3D生成大模型解决了现有3D生成模型在生成速度和泛化能力上的不足,帮助3D创作者和艺术家自动化生产3D资产。该模型具有强大的泛化能力和可控性,可重建各类尺度物体,从建筑到工具花草。在两个公开的3D数据集GSO与OmniObject3D上,混元3D生成大模型的效果优于主流开源模型,整体能力属于国际领先水平。

未来,腾讯混元将继续带来更多模态、更多尺寸的开源模型,将更多经过腾讯业务场景打磨和检验的模型开源,以促进大模型技术进步和行业生态繁荣。

腾讯3D模型访问地址

官网地址: https://3d.hunyuan.tencent.com/

Github 地址: https://github.com/Tencent/Hunyuan3D-1

Hugging Face 模型地址: https://huggingface.co/tencent/Hunyuan3D-1

Gitee地址: https://gitee.com/Tencent/Hunyuan3D-1

感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。点赞并关注,获取最新科技动态,不落伍!🤗🤗🤗

### 混元大模型私有化部署方法 对于希望在本地环境中运行并利用混元大语言模型的企业或开发者而言,私有化部署提供了一种安全可控的方式。腾讯混元不仅提供了开源的大规模预训练模型,还通过PaaS平台支持多种API服务调用[^1]。 #### 准备工作 为了实现混元大模型的私有化部署,需先完成如下准备工作: - **环境配置**:确保服务器具备足够的计算资源(CPU/GPU)、内存空间以及网络带宽;安装必要的依赖库如Python、CUDA等; - **获取授权许可**:联系官方渠道获得合法使用权及相关技术支持文档; - **下载源码包**:从指定仓库克隆项目代码至目标机器上。 ```bash git clone https://github.com/Tencent/HunYuan.git cd HunYuan/ ``` #### 部署流程 ##### 安装依赖项 按照README文件中的指导说明来设置虚拟环境,并执行pip install命令以加载所需的第三方模块。 ```bash conda create -n hy python=3.8 source activate hy pip install -r requirements.txt ``` ##### 数据准备 如果计划微调现有模型,则需要准备好相应的数据集,并将其转换成适合输入格式。这部分操作通常涉及到编写自定义脚本来处理原始文本或其他形式的数据。 ##### 启动服务端口 启动HTTP RESTful API接口监听特定IP地址与端口号的服务进程,以便后续能够远程访问该实例所提供的功能特性。 ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) device = "cuda" if torch.cuda.is_available() else "cpu" model_name_or_path = "./path_to_model/" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) @app.route('/predict', methods=['POST']) def predict(): input_text = request.json.get('text') inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response":result}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000) ``` 以上代码片段展示了一个简单的Flask应用程序框架,用于接收来自客户端发送过来的消息请求,并返回由混元大模型生成的回答内容作为响应结果。 请注意,在实际生产环境下还需要考虑更多因素,比如安全性加固措施、性能优化策略等方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值