你准备好将图像编辑提升到新的水平了吗?FLUX.1 Redux [dev]是一款强大的工具,它彻底改变了您探索和创建图像变化的方式。有了这款创新的适配器,你可以将图像转化为独一无二的杰作,同时保持原有的精髓。
FLUX.1 Redux [dev] 的强大功能
FLUX.1 Redux [dev] 是专为 FLUX.1 文本到图像基础模型 FLUX.1 [dev] 和 FLUX.1 [schnell] 设计的适配器。它通过提供一个简单而有效的过程,使用户能够生成迷人的图像变化。只需输入图像并描述所需的变化,就能让奇迹发生!该模型将创建新版本,确保原图像的核心元素保持不变,同时融入你的创意构想。
轻松进行创意探索
无论你是迭代概念的设计师,还是探索新方向的艺术家,FLUX.1 Redux [dev] 都是你的完美伴侣。它简化了创作过程,让你可以毫不费力地尝试不同的风格、色彩和构图。想象一下,只需点击几下,就能生成高质量的变体!
可访问性与集成
根据 Flux Dev License,FLUX.1 Redux [dev] 的模型权重和代码可随时在 Hugging Face 上获取。该资源库 https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev 为开发人员提供了将这一强大工具集成到其项目中的所有必要资源。只需输入 a1b3bdcb4bdc58ce04874b9ca776d61fc3e914bb6beab41efb63e4e2694dca45 的 sha256sum,您就可以访问并使用这一令人难以置信的技术。
互动采样
对于那些急于进入 FLUX.1 Redux [dev] 世界的人来说,交互式采样只需一个命令。通过运行 python -m src.flux.cli_redux --loop --name ,其中 name 可以是 flux-dev 或 flux-schnell,你就可以亲身体验这个适配器的强大功能。
示例
官方示例
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained("black-forest-labs/FLUX.1-Redux-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev" ,
text_encoder=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16
).to("cuda")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
pipe_prior_output = pipe_prior_redux(image)
images = pipe(
guidance_scale=2.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
**pipe_prior_output,
).images
images[0].save("flux-dev-redux.png")
Out of memory,很好的开始,准备排爆!!!
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
device = "cuda"
dtype = torch.bfloat16
repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
repo_base = "black-forest-labs/FLUX.1-dev"
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
# pipe_prior_redux.enable_model_cpu_offload() # 这里我发现有两个Pipeline,但是不建议用 cpu offload
image = load_image("https://hf-mirror.com/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")
pipe_prior_output = pipe_prior_redux(image)
# pipe_prior_output 变量赋值后,直接用 GC 和 cuda.empty_cache() 回收显存
import gc
del pipe_prior_redux
gc.collect()
torch.cuda.empty_cache()
pipe = FluxPipeline.from_pretrained(
repo_base,
text_encoder=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16
).to(device)
pipe.enable_sequential_cpu_offload() # FluxPipeline模型巨大用 cpu offload 减轻显存压力
# pipe.vae.enable_slicing()
# pipe.vae.enable_tiling()
images = pipe(
guidance_scale=2.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
**pipe_prior_output,
).images
images[0].save("flux-redux.png")
结论
FLUX.1 Redux [dev] 对于想要提高图像编辑能力的人来说是一个改变游戏规则的工具。它既能生成各种图像变化,又能保留原始图像的精华,为我们开辟了一个充满创造力的世界。这款适配器具有用户友好性和易用性,是设计师、艺术家和任何热衷于图像处理的人的必备工具。
还等什么?赶快进入 FLUX.1 Redux [dev] 的世界,释放你的创造潜能吧!