【黑森林官方墙裂推荐】FLUX.1-Redux-dev:释放创造的可能性

你准备好将图像编辑提升到新的水平了吗?FLUX.1 Redux [dev]是一款强大的工具,它彻底改变了您探索和创建图像变化的方式。有了这款创新的适配器,你可以将图像转化为独一无二的杰作,同时保持原有的精髓。

FLUX.1 Redux [dev] 的强大功能

FLUX.1 Redux [dev] 是专为 FLUX.1 文本到图像基础模型 FLUX.1 [dev] 和 FLUX.1 [schnell] 设计的适配器。它通过提供一个简单而有效的过程,使用户能够生成迷人的图像变化。只需输入图像并描述所需的变化,就能让奇迹发生!该模型将创建新版本,确保原图像的核心元素保持不变,同时融入你的创意构想。

在这里插入图片描述

轻松进行创意探索

无论你是迭代概念的设计师,还是探索新方向的艺术家,FLUX.1 Redux [dev] 都是你的完美伴侣。它简化了创作过程,让你可以毫不费力地尝试不同的风格、色彩和构图。想象一下,只需点击几下,就能生成高质量的变体!

可访问性与集成

根据 Flux Dev License,FLUX.1 Redux [dev] 的模型权重和代码可随时在 Hugging Face 上获取。该资源库 https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev 为开发人员提供了将这一强大工具集成到其项目中的所有必要资源。只需输入 a1b3bdcb4bdc58ce04874b9ca776d61fc3e914bb6beab41efb63e4e2694dca45 的 sha256sum,您就可以访问并使用这一令人难以置信的技术。

互动采样

对于那些急于进入 FLUX.1 Redux [dev] 世界的人来说,交互式采样只需一个命令。通过运行 python -m src.flux.cli_redux --loop --name ,其中 name 可以是 flux-dev 或 flux-schnell,你就可以亲身体验这个适配器的强大功能。

在这里插入图片描述

示例

官方示例

import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image

pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained("black-forest-labs/FLUX.1-Redux-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev" , 
    text_encoder=None,
    text_encoder_2=None,
    torch_dtype=torch.bfloat16
).to("cuda")

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
pipe_prior_output = pipe_prior_redux(image)
images = pipe(
    guidance_scale=2.5,
    num_inference_steps=50,
    generator=torch.Generator("cpu").manual_seed(0),
    **pipe_prior_output,
).images
images[0].save("flux-dev-redux.png")

Out of memory,很好的开始,准备排爆!!!

import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
device = "cuda"
dtype = torch.bfloat16

repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
repo_base = "black-forest-labs/FLUX.1-dev" 
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
# pipe_prior_redux.enable_model_cpu_offload() # 这里我发现有两个Pipeline,但是不建议用 cpu offload
image = load_image("https://hf-mirror.com/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")

pipe_prior_output = pipe_prior_redux(image)

# pipe_prior_output 变量赋值后,直接用 GC 和 cuda.empty_cache() 回收显存
import gc
del pipe_prior_redux
gc.collect()
torch.cuda.empty_cache()

pipe = FluxPipeline.from_pretrained(
    repo_base, 
    text_encoder=None,
    text_encoder_2=None,
    torch_dtype=torch.bfloat16
).to(device)

pipe.enable_sequential_cpu_offload() # FluxPipeline模型巨大用 cpu offload 减轻显存压力
# pipe.vae.enable_slicing()
# pipe.vae.enable_tiling()

images = pipe(
    guidance_scale=2.5,
    num_inference_steps=50,
    generator=torch.Generator("cpu").manual_seed(0),
    **pipe_prior_output,
).images

images[0].save("flux-redux.png")

结论

FLUX.1 Redux [dev] 对于想要提高图像编辑能力的人来说是一个改变游戏规则的工具。它既能生成各种图像变化,又能保留原始图像的精华,为我们开辟了一个充满创造力的世界。这款适配器具有用户友好性和易用性,是设计师、艺术家和任何热衷于图像处理的人的必备工具。

还等什么?赶快进入 FLUX.1 Redux [dev] 的世界,释放你的创造潜能吧!

### 关于 FluxRedux 开发的相关教程和指南 Flux 是由 Facebook 设计的一种架构模式,旨在解决传统 MVC 架构在大规模应用中的不足之处[^2]。它通过单向数据流的方式管理应用程序的状态,使得状态变化更加可预测和易于调试。 Redux 则是在 Flux 思想的基础上发展而来的状态管理库,广泛应用于 React 应用程序中。为了帮助开发者更高效地调试和检查应用,社区创建了许多工具,比如 Redux DevTools[^1]。这些工具极大地提升了开发体验,使开发者能够更好地理解状态的变化过程。 以下是关于 FluxRedux 开发的一些重要概念以及推荐的学习资源: #### 1. **Flux 基础** Flux 的核心理念围绕着四个主要组件展开:Action、Dispatcher、Store 和 View。这种单向数据流动的设计可以有效减少复杂性和不可控的状态变更问题。 - Action 表示发生的事情,通常是一个简单的对象。 - Dispatcher 负责分发 Actions 给 Store。 - Store 存储数据并处理逻辑更新。 - Views (React Components) 显示数据并与用户交互。 可以通过阅读 Facebook 官方文档或者观看他们的经典演讲《Hacker Way: Rethinking Web App Development at Facebook》来深入学习 Flux 的设计理念及其起源。 #### 2. **Redux 核心概念** ReduxFlux 的思想进一步简化和完善,引入了 Reducer 函数的概念用于计算新的 State。其工作流程主要包括以下几个部分: - 创建一个全局唯一的 Store 来保存整个应用的状态树。 - 使用纯函数作为 Reducers 处理不同类型的 Actions 并返回新状态。 - 中间件(Middleware)允许扩展异步操作等功能支持。 对于初学者来说,《Redux Official Documentation》提供了详尽的基础入门到高级主题讲解;另外还有许多在线课程视频可供选择学习如何实际运用该框架构建项目实例。 #### 示例代码展示 下面给出一段简单实现增删功能列表项的小例子以演示基本原理: ```javascript // action types const ADD_TODO = 'ADD_TODO'; const DELETE_TODO = 'DELETE_TODO'; // action creators function addTodo(text){ return {type : ADD_TODO , payload:{text}}; } function deleteTodo(index){ return {type : DELETE_TODO,payload:{index}} } // reducer function let initialState = []; function todosReducer(state=initialState,action){ switch(action.type){ case ADD_TODO : return [...state,{id:Date.now(),content:action.payload.text}]; case DELETE_TODO: const newState=[...state]; newState.splice(action.payload.index,1); return newState; default:return state; } } // setting up store with redux createStore method. import {createStore} from 'redux'; let store=createStore(todosReducer); console.log(store.getState()); store.dispatch(addTodo('Learn about flux')); console.log(store.getState()); store.dispatch(deleteTodo(0)); console.log(store.getState()); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值