您准备好让您的角色扮演游戏更上一层楼了吗?Oxy 1 Small 是一款功能强大但结构紧凑的语言模型,旨在彻底改变我们参与角色扮演的方式。该模型由 Oxygen (oxyapi) 和 TornadoSoftwares 共同开发,是 Qwen/Qwen2.5-14B-Instruct 语言模型的微调版,专为互动故事和动态对话量身定制。
模型概述
Oxy 1 Small 是一个轻量级的语言模型,但功能强大。尽管体积小,但它在生成引人入胜的角色扮演对话方面表现出色,是游戏开发人员、作家和寻求身临其境体验的爱好者的理想选择。以下是其主要功能的详细介绍:
- 角色扮演专业化: 该模型经过微调,在角色扮演场景中表现出色,可生成语境丰富、引人入胜的对话。
- 效率高: 该模型体积小巧,可加快推理速度,减少文本生成所需的计算资源。
- 易用性: Oxy 1 Small 的设计便于广大用户使用,使其成为适用于各种应用的多功能工具。
技术细节
- 型号名称: Oxy 1 Small
- 型号 ID:Oxyapi/oxy-1-small
- 基本型号:Qwen/Qwen2.5 Qwen/Qwen2.5-14B-Instruct
- 模型类型 : 聊天完成
- 提示格式: ChatML 聊天ML
- 授权许可: Apache-2.0
- 语言: 英语
- Tokenizer: Qwen/Qwen2.5-14B-Instruct
- 最大输入标记数:32,768
- 最大输出令牌数: 8,192
使用
将 Oxy 1 Small 整合到角色扮演项目中非常简单。您可以利用 "Hugging Face Transformers "库加载模型并生成文本。下面是一个代码片段,可以帮助您开始使用: Oxy 1 Small 可用于角色扮演项目。
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("oxyapi/oxy-1-small")
model = AutoModelForCausalLM.from_pretrained("oxyapi/oxy-1-small")
prompt = "You are a wise old wizard in a mystical land. A traveler approaches you seeking advice."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=500)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
性能和评估
虽然目前还没有性能基准,但 Oxy 1 Small 已在角色扮演场景中展示了令人印象深刻的能力。未来的更新将包括对相关数据集的详细评估,以提供对其性能的全面了解。
Open LLM Leaderboard Evaluation Results
Oxy 1 Small 在 Open LLM 排行榜上取得了显著成绩,展示了自己的实力:
Metric | Value |
---|---|
Avg. | 33.14 |
IFEval (0-Shot) | 62.45 |
BBH (3-Shot) | 41.18 |
MATH Lvl 5 (4-Shot) | 18.28 |
GPQA (0-shot) | 16.22 |
MuSR (0-shot) | 16.28 |
MMLU-PRO (5-shot) | 44.45 |
结论
Oxy 1 Small 是一种出色的语言模型,为角色扮演爱好者和开发人员开辟了新的可能性。其专业的训练和高效的设计使其成为创造身临其境体验的重要工具。Oxy 1 Small 易于使用,性能良好,必将成为寻求增强角色扮演冒险体验的用户的首选。敬请关注未来的更新,探索这款创新机型的无限可能!