字节开源嘴型同步模型LatentSync,实现超真实口型同步

近日,字节跳动发布了名为 LatentSync 的新型口型同步框架,旨在利用音频条件潜在扩散模型实现更精确的口型同步。该框架基于Stable Diffusion,针对时间一致性做了优化。

与以往的基于像素空间扩散或两阶段生成的方法不同,LatentSync 采用端到端的方式,无需中间运动表示,能够直接建模复杂的音频与视觉之间的关系。

在这里插入图片描述
在 LatentSync 的框架中,首先使用 Whisper 将音频频谱图转换为音频嵌入,并通过交叉注意力层将其集成到 U-Net 模型中。框架通过将参考帧和掩码帧与噪声潜在变量进行通道级拼接,作为 U-Net 的输入。

在训练过程中,采用一步法从预测噪声中估计出干净的潜在变量,然后进行解码以生成干净的帧。同时,模型引入了 Temporal REPresentation Alignment(TREPA)机制,以增强时间一致性,确保生成的视频在口型同步准确性的同时,能够在时间上保持连贯。

为了展示该技术的效果,项目提供了一系列示例视频,分别展示了原始视频与经过口型同步处理后的视频。通过示例,用户可以直观地感受到 LatentSync 在视频口型同步方面的显著进步。

此外,项目还计划开源推理代码和检查点,方便用户进行训练和测试。对于想要尝试推理的用户,只需下载必要的模型权重文件,即可进行操作。完整的数据处理流程也已设计好,涵盖了从视频文件处理到面部对齐的各个步骤,确保用户能够轻松上手。

模型项目入口:https://github.com/bytedance/LatentSync

追加

模型要是用whisper large v3 就 perfect 了

Colab T4

下载代码

!git clone https://github.com/bytedance/LatentSync.git

部署环境

!pip install -q condacolab
import condacolab
condacolab.install()
import condacolab
condacolab.check()
!cd LatentSync && source setup_env.sh

推理

%%bash
source /usr/local/envs/latentsync               
cd LatentSync && ./inference.sh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值