Wan-Video
Wan-Video 是阿里巴巴开源的视频合成模型集合。
使用此模型之前,请从源代码安装 DiffSynth-Studio。
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
Wan-Video 支持多种 Attention 实现方式。如果您安装了以下任何一种 Attention 实施方案,它们都将根据优先级启用。
- Flash Attention 3
- Flash Attention 2
- Sage Attention
- torch SDPA (default.
torch>=2.5.0
is recommended.)
推理
Wan-Video-1.3B-T2V
Wan-Video-1.3B-T2V支持文本转视频和视频转视频。
所需显存: 6G
wan_1.3b_text_too_video.py
import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData
from modelscope import snapshot_download
# Download models
snapshot_download("Wan-AI/Wan2.1-T2V-1.3B", local_dir="models/Wan-AI/Wan2.1-T2V-1.3B")
# Load models
model_manager = ModelManager(device="cpu")
model_manager.load_models(
[
"models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors",
"models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth",
"models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
],
torch_dtype=torch.bfloat16, # You can set `torch_dtype=torch.float8_e4m3fn` to enable FP8 quantization.
)
pipe = WanVideoPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=None) # None改成0,可以低显存运行
# Text-to-video
video = pipe(
prompt="纪实摄影风格画面,一只活泼的小狗在绿茵茵的草地上迅速奔跑。小狗毛色棕黄,两只耳朵立起,神情专注而欢快。阳光洒在它身上,使得毛发看上去格外柔软而闪亮。背景是一片开阔的草地,偶尔点缀着几朵野花,远处隐约可见蓝天和几片白云。透视感鲜明,捕捉小狗奔跑时的动感和四周草地的生机。中景侧面移动视角。",
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
num_inference_steps=50,
seed=0, tiled=True
)
save_video(video, "video1.mp4", fps=15, quality=5)
# Video-to-video
video = VideoData("video1.mp4", height=480, width=832)
video = pipe(
prompt="纪实摄影风格画面,一只活泼的小狗戴着黑色墨镜在绿茵茵的草地上迅速奔跑。小狗毛色棕黄,戴着黑色墨镜,两只耳朵立起,神情专注而欢快。阳光洒在它身上,使得毛发看上去格外柔软而闪亮。背景是一片开阔的草地,偶尔点缀着几朵野花,远处隐约可见蓝天和几片白云。透视感鲜明,捕捉小狗奔跑时的动感和四周草地的生机。中景侧面移动视角。",
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
input_video=video, denoising_strength=0.7,
num_inference_steps=50,
seed=1, tiled=True
)
save_video(video, "video2.mp4", fps=15, quality=5)
Wan-Video-14B-T2V
Wan-Video-14B-T2V 是 Wan-Video-1.3B-T2V 的增强版,尺寸更大,功能更强。要使用该型号,您需要额外的 VRAM。我们建议用户调整 torch_dtype 和 num_persistent_param_in_dit 设置,以便在速度和 VRAM 需求之间找到最佳平衡。
我们在此列出了详细的表格。该模型在一台 A100 上进行了测试。
torch_dtype | num_persistent_param_in_dit | Speed | Required VRAM | Default Setting |
---|---|---|---|---|
torch.bfloat16 | None (unlimited) | 18.5s/it | 40G | |
torch.bfloat16 | 7*10**9 (7B) | 20.8s/it | 24G | |
torch.bfloat16 | 0 | 23.4s/it | 10G | |
torch.float8_e4m3fn | None (unlimited) | 18.3s/it | 24G | yes |
torch.float8_e4m3fn | 0 | 24.0s/it | 10G |
wan_14b_text_to_video.py
import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData
from modelscope import snapshot_download
# Download models
snapshot_download("Wan-AI/Wan2.1-T2V-14B", local_dir="models/Wan-AI/Wan2.1-T2V-14B")
# Load models
model_manager = ModelManager(device="cpu")
model_manager.load_models(
[
[
"models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00001-of-00006.safetensors",
"models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00002-of-00006.safetensors",
"models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00003-of-00006.safetensors",
"models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00004-of-00006.safetensors",
"models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00005-of-00006.safetensors",
"models/Wan-AI/Wan2.1-T2V-14B/diffusion_pytorch_model-00006-of-00006.safetensors",
],
"models/Wan-AI/Wan2.1-T2V-14B/models_t5_umt5-xxl-enc-bf16.pth",
"models/Wan-AI/Wan2.1-T2V-14B/Wan2.1_VAE.pth",
],
torch_dtype=torch.float8_e4m3fn, # You can set `torch_dtype=torch.bfloat16` to disable FP8 quantization.
)
pipe = WanVideoPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=None) # You can set `num_persistent_param_in_dit` to a small number to reduce VRAM required.
# Text-to-video
video = pipe(
prompt="一名宇航员身穿太空服,面朝镜头骑着一匹机械马在火星表面驰骋。红色的荒凉地表延伸至远方,点缀着巨大的陨石坑和奇特的岩石结构。机械马的步伐稳健,扬起微弱的尘埃,展现出未来科技与原始探索的完美结合。宇航员手持操控装置,目光坚定,仿佛正在开辟人类的新疆域。背景是深邃的宇宙和蔚蓝的地球,画面既科幻又充满希望,让人不禁畅想未来的星际生活。",
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
num_inference_steps=50,
seed=0, tiled=True
)
save_video(video, "video1.mp4", fps=25, quality=5)
Wan-Video-14B-I2V
Wan-Video-14B-I2V 在 Wan-Video-14B-T2V 的基础上增加了图像到视频的功能。型号大小保持不变,因此速度和 VRAM 要求也保持一致。
在示例代码中,我们使用了与 T2V 14B 模型相同的设置,默认启用 FP8 量化。不过,我们发现该模型对精度更为敏感,因此当生成的视频内容出现伪影等问题时,请切换到 bfloat16 精度,并使用 num_persistent_param_in_dit 参数来控制 VRAM 的使用。
训练
我们支持 Wan-Video LoRA 培训和全面培训。下面是教程。这是一项实验性功能。
步骤 1:安装其他软件包
pip install peft lightning pandas
第 2 步:准备数据集
您需要对训练视频进行如下管理:
data/example_dataset/
├── metadata.csv
└── train
├── video_00001.mp4
└── image_00002.jpg
metadata.csv
:
file_name,text
video_00001.mp4,"video description"
image_00002.jpg,"video description"
我们支持图像和视频。图像被视为单帧视频。
步骤 3:数据处理
CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py \
--task data_process \
--dataset_path data/example_dataset \
--output_path ./models \
--text_encoder_path "models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth" \
--vae_path "models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth" \
--tiled \
--num_frames 81 \
--height 480 \
--width 832
之后,一些缓存文件将存储在数据集文件夹中。
data/example_dataset/
├── metadata.csv
└── train
├── video_00001.mp4
├── video_00001.mp4.tensors.pth
├── video_00002.mp4
└── video_00002.mp4.tensors.pth
第 4 步:训练
LoRA training:
CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py \
--task train \
--train_architecture lora \
--dataset_path data/example_dataset \
--output_path ./models \
--dit_path "models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors" \
--steps_per_epoch 500 \
--max_epochs 10 \
--learning_rate 1e-4 \
--lora_rank 16 \
--lora_alpha 16 \
--lora_target_modules "q,k,v,o,ffn.0,ffn.2" \
--accumulate_grad_batches 1 \
--use_gradient_checkpointing
Full training:
CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py \
--task train \
--train_architecture full \
--dataset_path data/example_dataset \
--output_path ./models \
--dit_path "models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors" \
--steps_per_epoch 500 \
--max_epochs 10 \
--learning_rate 1e-4 \
--accumulate_grad_batches 1 \
--use_gradient_checkpointing
Step 5: Test
Test LoRA:
import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models([
"models/Wan-AI/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors",
"models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth",
"models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
])
model_manager.load_lora("models/lightning_logs/version_1/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = WanVideoPipeline.from_model_manager(model_manager, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=None)
video = pipe(
prompt="...",
negative_prompt="...",
num_inference_steps=50,
seed=0, tiled=True
)
save_video(video, "video.mp4", fps=30, quality=5)
Test fine-tuned base model:
import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models([
"models/lightning_logs/version_1/checkpoints/epoch=0-step=500.ckpt",
"models/Wan-AI/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth",
"models/Wan-AI/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
])
pipe = WanVideoPipeline.from_model_manager(model_manager, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=None)
video = pipe(
prompt="...",
negative_prompt="...",
num_inference_steps=50,
seed=0, tiled=True
)
save_video(video, "video.mp4", fps=30, quality=5)
参看文献
https://github.com/Wan-Video/Wan2.1/blob/main/README.md