【流体力学】从无量纲化的NS方程看几个准则数:施特劳哈尔数、雷诺数、弗劳德数

之前没怎么关注,今天偶然翻阅Ferziger的书发现几个准则数的意义可以从NS方程上找到:

来自Ferziger的计算流体力学教材、
首先把几个物理量无量纲化,如下:
在这里插入图片描述

带入到NS方程中(这里给张量式)
在这里插入图片描述

然后整理归纳,得到无量纲化的NS方程,如下

在这里插入图片描述

(其中gamma是重力加速度)

其中几个准则数为

在这里插入图片描述

St是施特劳哈尔数Strouhal,表征流动非定常性
Re是雷诺数Reynolds,表征粘性
Fr是弗劳德数Froude,表示惯性力和重力量级的比

从NS方程上来看
St在是非定常项的系数,因此当St很小的时候,可以忽略非定常性
Re的倒数是粘性项的系数,因此当Re很大的时候,可以忽略粘性,即无粘流动,简化为欧拉方程,采用势流方法求解(OpenFOAM里为potentialFoam)
Fr的倒数的平方是重力项的系数,因此当Fr很大的时候,可以忽略重力

以上是从系数很小,以至于忽略的方向上来对NS方程进行简化的,
下面还可以从系数很大,以至于占据了主导,而忽略了其他项来进行简化:

若Re很小,以至于粘性项占据主导,则简化为蠕动流,或斯托克斯流。此时只关注压力项和粘性项,其他项都忽略。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值