常微分方程例如:
函数的自变量只有一个,同城是时间t
一般用来描述相对变化量,代替求难以计算的绝对变化量
比如固定区域内两种种群的变化
和物理的力学中
常微分方程代表随着一个变量引起的输出值变化的有限值的集合 比如时间变量
来看热身的例子
重力加速度给了物体向下的分量,大小为9.8m/s
把y坐标看成时间的函数
它的导数是速度的垂直分量
它的二阶导数就是重力加速度的垂直分量(红色直线代表的斜率向下,因此导数为负值)
我们得到一个y’’(t)=-g的微分方程
那么-g的原函数是什么?
-g的函数有无穷多个,初速度
v
0
v_0
v0决定具体是哪一个
那么
−
g
t
+
v
0
-gt+v_0
−gt+v0又是哪一个函数的导数
也可以加一个常亮
y
0
y_0
y0,由初始位置决定
这样我们就通过有关函数的变化率,求出了原函数
这和之前学习过的微分方程,通常是通过一个函数的导数,二阶导数来求原方程的过程
例如普通的简谐运动
当初始角度较大时是不成立的
再加上一个运动方向上的分量g
而且可以证明粉色和黄色向量的夹角也等于
θ
\theta
θ
那么 s i n θ = 蓝 色 / 黄 色 ( − g ) sin\theta=蓝色/黄色(-g) sinθ=蓝色/黄色(−g)
蓝色= − g ∗ s i n θ -g*sin\theta −g∗sinθ
粉色=
−
g
∗
c
o
s
θ
-g*cos\theta
−g∗cosθ
x的二阶导数就是
−
g
∗
s
i
n
θ
-g*sin\theta
−g∗sinθ
考虑空气阻力
将这个方程放进向量场
它的变化率就是变化趋势的大小和方向
用函数表示:
它的运动趋势
这个向量场还能体现出,当角度大于180时,小球需要赚几个圈才能进入旋涡
党阻力增大时,会更快进入旋涡
推广到任意常微分方程,都能用向量场空间来描述
这类问题通常过于复杂,如三体问题,我们需要18个维度来描述
我们把这样的空间称为 - 相空间 用来描述运动系统的所有状态空间
比如这个描述球体18个维度状态的空间叫做相空间
最后,用python求解单摆模型结束