微分方程2_常微分方程、相空间

常微分方程例如:

函数的自变量只有一个,同城是时间t

在这里插入图片描述
一般用来描述相对变化量,代替求难以计算的绝对变化量

比如固定区域内两种种群的变化
在这里插入图片描述
和物理的力学中
在这里插入图片描述
常微分方程代表随着一个变量引起的输出值变化的有限值的集合 比如时间变量

在这里插入图片描述
来看热身的例子

在这里插入图片描述
重力加速度给了物体向下的分量,大小为9.8m/s
在这里插入图片描述

在这里插入图片描述
把y坐标看成时间的函数
在这里插入图片描述
它的导数是速度的垂直分量

在这里插入图片描述
它的二阶导数就是重力加速度的垂直分量(红色直线代表的斜率向下,因此导数为负值)

在这里插入图片描述
在这里插入图片描述
我们得到一个y’’(t)=-g的微分方程

在这里插入图片描述
那么-g的原函数是什么?
在这里插入图片描述
在这里插入图片描述
-g的函数有无穷多个,初速度 v 0 v_0 v0决定具体是哪一个
在这里插入图片描述
那么 − g t + v 0 -gt+v_0 gt+v0又是哪一个函数的导数

在这里插入图片描述
也可以加一个常亮 y 0 y_0 y0,由初始位置决定
在这里插入图片描述
这样我们就通过有关函数的变化率,求出了原函数
在这里插入图片描述

这和之前学习过的微分方程,通常是通过一个函数的导数,二阶导数来求原方程的过程
在这里插入图片描述

例如普通的简谐运动
在这里插入图片描述
当初始角度较大时是不成立的
在这里插入图片描述
在这里插入图片描述
再加上一个运动方向上的分量g
在这里插入图片描述
而且可以证明粉色和黄色向量的夹角也等于 θ \theta θ

那么 s i n θ = 蓝 色 / 黄 色 ( − g ) sin\theta=蓝色/黄色(-g) sinθ=/(g)

蓝色= − g ∗ s i n θ -g*sin\theta gsinθ

粉色= − g ∗ c o s θ -g*cos\theta gcosθ
在这里插入图片描述

x的二阶导数就是 − g ∗ s i n θ -g*sin\theta gsinθ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
考虑空气阻力
在这里插入图片描述
在这里插入图片描述

将这个方程放进向量场
在这里插入图片描述
在这里插入图片描述

它的变化率就是变化趋势的大小和方向

在这里插入图片描述
用函数表示:
在这里插入图片描述

它的运动趋势
在这里插入图片描述
这个向量场还能体现出,当角度大于180时,小球需要赚几个圈才能进入旋涡
在这里插入图片描述
党阻力增大时,会更快进入旋涡
在这里插入图片描述
推广到任意常微分方程,都能用向量场空间来描述
在这里插入图片描述
这类问题通常过于复杂,如三体问题,我们需要18个维度来描述
在这里插入图片描述
我们把这样的空间称为 - 相空间 用来描述运动系统的所有状态空间
在这里插入图片描述
在这里插入图片描述
比如这个描述球体18个维度状态的空间叫做相空间
在这里插入图片描述
最后,用python求解单摆模型结束
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值