数学基础类:如何求矩阵的特征值和特征向量

本文详细介绍了特征值和特征向量的概念,包括如何通过特征多项式求解所有特征值,特征值与原矩阵对角线元素及行列式的关系,并提供了具体的求解实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、特征值特征向量定义
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
即利用特征多项式可以求出所有的特征值,
特征值之和等于原矩阵对角线元素之和
特征值的乘积等于原矩阵A的行列式的值。
特征多项式的乘积等于矩阵之积。
2、具体例子的求解方法
在这里插入图片描述
计算:A的特征值和特征向量。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
化简
在这里插入图片描述
在这里插入图片描述
令x=1,便可得出一个基础解系:
在这里插入图片描述
同理当 λ 2 = λ 3 = 0 λ_2=λ_3=0 λ2=λ3=0时,得出:
在这里插入图片描述
同样可以得出特征向量:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值