【花雕学编程】Arduino FOC 之完整的扩展卡尔曼滤波实现

在这里插入图片描述

Arduino是一个开放源码的电子原型平台,它可以让你用简单的硬件和软件来创建各种互动的项目。Arduino的核心是一个微控制器板,它可以通过一系列的引脚来连接各种传感器、执行器、显示器等外部设备。Arduino的编程是基于C/C++语言的,你可以使用Arduino IDE(集成开发环境)来编写、编译和上传代码到Arduino板上。Arduino还有一个丰富的库和社区,你可以利用它们来扩展Arduino的功能和学习Arduino的知识。

Arduino的特点是:
1、开放源码:Arduino的硬件和软件都是开放源码的,你可以自由地修改、复制和分享它们。
2、易用:Arduino的硬件和软件都是为初学者和非专业人士设计的,你可以轻松地上手和使用它们。
3、便宜:Arduino的硬件和软件都是非常经济的,你可以用很低的成本来实现你的想法。
4、多样:Arduino有多种型号和版本,你可以根据你的需要和喜好来选择合适的Arduino板。
5、创新:Arduino可以让你用电子的方式来表达你的创意和想象,你可以用Arduino来制作各种有趣和有用的项目,如机器人、智能家居、艺术装置等。

在这里插入图片描述
Arduino FOC(Field Oriented Control,场向量控制)是一种先进的电机控制技术,它允许精确控制电机的转矩和速度。这种控制技术特别适用于无刷直流电机(BLDC)和步进电机。在Arduino平台上实现FOC可以提供平滑的运行和高度的扭矩、速度和位置控制,它通过精确控制电机的电流和电压来实现高效率、高精度和低噪声的操作。

主要特点:
1、高性能电机控制:FOC是一种高级的电机控制算法,可以精准控制PMSM(永磁同步电机)和BLDC(无刷直流)电机,实现平滑的转速和扭矩输出。
2、闭环控制架构:FOC采用闭环反馈控制,通过检测电机的位置和速度数据,实时调整输出电压和电流,确保电机动作符合预期。
3、模块化设计:Arduino FOC库采用模块化设计,包含电机建模、速度/位置/电流控制环、PWM生成等子模块,用户可根据需求灵活组合使用。
4、可移植性强:Arduino FOC可移植到多种硬件平台,如Arduino、ESP32、STM32与树莓派等,适用于功率从几十瓦到几千瓦的电机系统。
5、参数自动识别:FOC库具有自动识别电机参数的功能,可以大幅简化电机控制系统的调试过程。

应用场景:
1、工业自动化:在工厂的机器人、传送带、CNC加工设备等领域,Arduino FOC可提供高性能的电机控制解决方案。
2、电动车辆:电动自行车、电动汽车、电动叉车等车载电机驱动系统,可以采用Arduino FOC进行精准控制。
3、家用电器:在电风扇、洗衣机、空调等家用电器中,Arduino FOC可实现细腻的电机速度和扭矩控制。
4、航模和无人机:航模飞机、无人机等对电机控制性能要求很高的领域,Arduino FOC能够提供高精度的电机驱动。
5、机器人:工业机器人、服务机器人、仿生机器人等对电机控制性能有严格要求的领域,Arduino FOC是一个不错的选择。

需要注意的事项:
1、硬件要求:Arduino FOC对控制器的性能(如CPU频率、RAM/ROM容量等)有一定要求,需要选择合适的硬件平台。
2、调试复杂性:FOC算法涉及电机建模、坐标变换、PI调节器等诸多环节,调试和调优过程相对复杂,需要一定的专业知识。
3、噪声抑制:电机驱动电路容易产生噪声干扰,需要采取合理的屏蔽和滤波措施,确保信号质量。
4、安全防护:电机驱动系统可能会产生过电流、过压等故障,需要配备可靠的保护电路,确保人身和设备安全。
5、系统集成:将Arduino FOC集成到完整的电机驱动系统中时,需要考虑机械、电力、控制等各个方面的协调配合。

总的来说,Arduino FOC是一种功能强大、性能优秀的电机控制解决方案,适用于工业自动化、电动车辆、家用电器等众多领域。但在硬件选型、算法调试、噪声抑制和安全防护等方面都需要谨慎考虑,以确保系统稳定可靠地运行。

附录:系列目录
1、Arduino FOC的特点、场景和使用事项
http://t.csdnimg.cn/WZhYL
2、Arduino FOC 之简单FOC库 - 跨平台的无刷直流和步进电机FOC实现
http://t.csdnimg.cn/p9ADE
3、Arduino FOC 之无刷直流电机速度控制
http://t.csdnimg.cn/gZ7CY
4、Arduino FOC 之步进电机位置控制
http://t.csdnimg.cn/VYbIb
5、Arduino FOC 之无刷直流电机电流控制
http://t.csdnimg.cn/wWGVu
6、Arduino FOC 之 SimpleFOC 库的主要函数
http://t.csdnimg.cn/S26MC
7、Arduino FOC 之 ArduinoFOC库的核心函数
http://t.csdnimg.cn/3VLzF
8、Arduino FOC 之传感器校准
http://t.csdnimg.cn/NS3TR
9、Arduino FOC 之SimpleFOCShield v2.0.4无刷电机驱动板
http://t.csdnimg.cn/g9mP7
10、Arduino FOC 之 AS5600角度读取
http://t.csdnimg.cn/dmI6F
11、Arduino FOC 之 FOC算法
http://t.csdnimg.cn/ENxc0
12、Arduino FOC 之 SimpleFOC库的适配电机方案
http://t.csdnimg.cn/QdH6k

在这里插入图片描述
Arduino FOC 之完整的扩展卡尔曼滤波实现
一、主要特点
非线性状态估计:
扩展卡尔曼滤波(EKF)是一种处理非线性系统的状态估计方法。它通过对非线性系统进行线性化处理,使得滤波器能够在复杂环境中有效工作。
实时性能:
EKF在Arduino环境中实现时,能够快速处理传感器数据,实时更新状态估计,适合对实时性要求较高的应用。
灵活性:
EKF的结构允许用户根据具体应用需求灵活调整状态方程和观测方程,适应不同类型的系统和传感器。
鲁棒性:
EKF对系统噪声和观测噪声具有一定的鲁棒性,能够在有噪声的环境中进行有效的状态估计,提高系统的可靠性。
多传感器融合:
EKF可以结合多种传感器数据(如IMU、GPS、编码器等),通过融合不同传感器的信息,提升状态估计的精度和稳定性。

二、应用场景
移动机器人定位:
在移动机器人中,EKF常用于估计机器人的位置和姿态,结合IMU和轮速计数据,提供精确的定位信息,支持自主导航。
无人机控制:
在无人机飞行控制中,EKF用于融合GPS、IMU等多种传感器数据,实现高精度的姿态和位置估计,提升飞行稳定性。
自动驾驶系统:
在自动驾驶汽车中,EKF可以用来估计车辆的状态,包括位置、速度和加速度,支持路径规划和决策。
机器人手臂控制:
在机器人手臂控制中,EKF通过融合关节传感器和外部传感器数据,精确估计手臂的末端位置和姿态,实现高精度控制。
智能家居与物联网:
在智能家居设备中,EKF可用于状态监测和环境感知,通过多传感器数据的融合,提高设备的智能化水平。

三、注意事项
系统模型的准确性:
EKF的性能依赖于状态方程和观测方程的准确性,需确保模型能够真实反映系统动态,避免模型误差影响滤波效果。
线性化过程:
在扩展卡尔曼滤波中,线性化过程可能引入误差,需小心处理状态转移和观测方程的线性化,确保线性化的有效性。
噪声特性:
需准确建模系统噪声和观测噪声的特性,选择合适的噪声协方差矩阵,以提高滤波器的性能和鲁棒性。
计算复杂性:
EKF的计算复杂度较高,需确保在Arduino平台上实现时,能够满足实时性要求,避免计算延迟导致的控制不稳定。
初始化问题:
EKF对初始状态的选择敏感,需合理设置初始状态和协方差矩阵,以确保滤波器能够快速收敛到正确的状态估计。

总结
完整的扩展卡尔曼滤波实现基于Arduino FOC技术在移动机器人、无人机和自动驾驶系统等领域具有广泛应用。通过高效的非线性状态估计和多传感器融合,能够显著提高系统的定位和控制精度。在实施过程中,需关注系统模型的准确性、线性化过程的有效性以及噪声特性的建模,以确保系统的高效性和可靠性。合理的设计与优化将推动该技术在智能化和自动化领域的发展。

在这里插入图片描述

1、简单的扩展卡尔曼滤波实现

#include <Arduino.h>

const float dt = 0.1; // 时间间隔
float x_est[2] = {0.0, 0.0}; // 状态估计 [位置, 速度]
float P[2][2] = {{1, 0}, {0, 1}}; // 估计误差协方差
float Q[2][2] = {{0.1, 0}, {0, 0.1}}; // 过程噪声协方差
float R = 0.5; // 测量噪声协方差

void setup() {
  Serial.begin(9600);
}

void loop() {
  float z = getMeasurement(); // 获取测量值
  ekf(z);
  delay(100); // 延时100ms
}

float getMeasurement() {
  // 模拟测量值
  return random(0, 100) + x_est[0]; // 基于当前位置添加噪声
}

void ekf(float z) {
  // 预测步骤
  float x_pred[2] = {x_est[0] + x_est[1] * dt, x_est[1]};
  float P_pred[2][2] = {
    {P[0][0] + Q[0][0], P[0][1]},
    {P[1][0], P[1][1] + Q[1][1]}
  };

  // 更新步骤
  float K[2]; // 卡尔曼增益
  float S = P_pred[0][0] + R; // 残差协方差
  K[0] = P_pred[0][0] / S;
  K[1] = P_pred[1][0] / S;

  // 更新状态估计
  x_est[0] = x_pred[0] + K[0] * (z - x_pred[0]);
  x_est[1] = x_pred[1] + K[1] * (z - x_pred[0]);

  // 更新估计误差协方差
  float P_temp[2][2] = {
    {P_pred[0][0] - K[0] * P_pred[0][0], P_pred[0][1] - K[0] * P_pred[0][1]},
    {P_pred[1][0] - K[1] * P_pred[1][0], P_pred[1][1] - K[1] * P_pred[1][1]}
  };

  // 更新估计误差协方差
  P[0][0] = P_temp[0][0];
  P[0][1] = P_temp[0][1];
  P[1][0] = P_temp[1][0];
  P[1][1] = P_temp[1][1];

  // 打印状态估计
  Serial.print("Estimated Position: ");
  Serial.print(x_est[0]);
  Serial.print(", Estimated Velocity: ");
  Serial.println(x_est[1]);
}

2、扩展卡尔曼滤波处理非线性系统

#include <Arduino.h>

const float dt = 0.1; // 时间间隔
float x_est[3] = {0.0, 0.0, 0.0}; // 状态估计 [位置, 速度, 加速度]
float P[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; // 估计误差协方差
float Q[3][3] = {{0.1, 0, 0}, {0, 0.1, 0}, {0, 0, 0.1}}; // 过程噪声协方差
float R = 0.5; // 测量噪声协方差

void setup() {
  Serial.begin(9600);
}

void loop() {
  float z = getMeasurement(); // 获取测量值
  ekf(z);
  delay(100); // 延时100ms
}

float getMeasurement() {
  // 模拟测量值
  return random(0, 100) + x_est[0]; // 基于当前位置添加噪声
}

void ekf(float z) {
  // 预测步骤
  float x_pred[3];
  x_pred[0] = x_est[0] + x_est[1] * dt + 0.5 * x_est[2] * dt * dt;
  x_pred[1] = x_est[1] + x_est[2] * dt;
  x_pred[2] = x_est[2]; // 假设加速度保持不变

  // 更新估计误差协方差
  float P_pred[3][3] = {
    {P[0][0] + Q[0][0], P[0][1], P[0][2]},
    {P[1][0], P[1][1] + Q[1][1], P[1][2]},
    {P[2][0], P[2][1], P[2][2] + Q[2][2]}
  };

  // 更新步骤
  float K[3]; // 卡尔曼增益
  float S = P_pred[0][0] + R; // 残差协方差
  K[0] = P_pred[0][0] / S;
  K[1] = P_pred[1][0] / S;
  K[2] = P_pred[2][0] / S;

  // 更新状态估计
  x_est[0] = x_pred[0] + K[0] * (z - x_pred[0]);
  x_est[1] = x_pred[1] + K[1] * (z - x_pred[0]);
  x_est[2] = x_pred[2] + K[2] * (z - x_pred[0]);

  // 更新估计误差协方差
  P[0][0] = P_pred[0][0] - K[0] * P_pred[0][0];
  P[0][1] = P_pred[0][1] - K[0] * P_pred[0][1];
  P[1][0] = P_pred[1][0] - K[1] * P_pred[1][0];
  P[1][1] = P_pred[1][1] - K[1] * P_pred[1][1];
  P[2][0] = P_pred[2][0] - K[2] * P_pred[2][0];
  P[2][1] = P_pred[2][1] - K[2] * P_pred[2][1];

  // 打印状态估计
  Serial.print("Estimated Position: ");
  Serial.print(x_est[0]);
  Serial.print(", Estimated Velocity: ");
  Serial.print(x_est[1]);
  Serial.print(", Estimated Acceleration: ");
  Serial.println(x_est[2]);
}

3、扩展卡尔曼滤波与传感器融合

#include <Arduino.h>

const float dt = 0.1; // 时间间隔
float x_est[2] = {0.0, 0.0}; // 状态估计 [位置, 速度]
float P[2][2] = {{1, 0}, {0, 1}}; // 估计误差协方差
float Q[2][2] = {{0.1, 0}, {0, 0.1}}; // 过程噪声协方差
float R = 0.5; // 测量噪声协方差

void setup() {
  Serial.begin(9600);
}

void loop() {
  float z1 = getSensor1Measurement(); // 获取传感器1测量值
  float z2 = getSensor2Measurement(); // 获取传感器2测量值
  ekf(z1, z2);
  delay(100); // 延时100ms
}

float getSensor1Measurement() {
  // 模拟传感器1测量值
  return random(0, 100) + x_est[0];
}

float getSensor2Measurement() {
  // 模拟传感器2测量值
  return random(0, 100) + x_est[0];
}

void ekf(float z1, float z2) {
  // 预测步骤
  float x_pred[2] = {x_est[0] + x_est[1] * dt, x_est[1]};
  float P_pred[2][2] = {
    {P[0][0] + Q[0][0], P[0][1]},
    {P[1][0], P[1][1] + Q[1][1]}
  };

  // 更新步骤
  float K[2]; // 卡尔曼增益
  float S = (P_pred[0][0] + R) / 2; // 残差协方差(取两个测量值的平均)
  K[0] = P_pred[0][0] / S;
  K[1] = P_pred[1][0] / S;

  // 更新状态估计
  x_est[0] = x_pred[0] + K[0] * ((z1 + z2) / 2 - x_pred[0]);
  x_est[1] = x_pred[1] + K[1] * ((z1 + z2) / 2 - x_pred[0]);

  // 更新估计误差协方差
  P[0][0] = P_pred[0][0] - K[0] * P_pred[0][0];
  P[0][1] = P_pred[0][1] - K[0] * P_pred[0][1];
  P[1][0] = P_pred[1][0] - K[1] * P_pred[1][0];
  P[1][1] = P_pred[1][1] - K[1] * P_pred[1][1];

  // 打印状态估计
  Serial.print("Estimated Position: ");
  Serial.print(x_est[0]);
  Serial.print(", Estimated Velocity: ");
  Serial.println(x_est[1]);
}

要点解读
扩展卡尔曼滤波(EKF)的基本原理:
EKF是一种用于非线性系统状态估计的滤波器,通过线性化状态转移函数和测量函数来处理非线性。以上代码展示了如何实现基本的EKF,预测和更新步骤结合了状态估计和误差协方差更新。
状态预测与更新:
在每个循环中,首先进行状态预测,然后通过测量值更新状态。预测步骤使用前一个状态和估计的过程噪声,更新步骤则结合新的测量值和预测结果,利用卡尔曼增益调整估计值。
处理非线性系统:
第二个代码案例展示了如何处理具有加速度的非线性系统。通过在状态预测中考虑加速度的影响,能够更准确地估计系统状态。这种处理方式在动态系统中尤为重要。
传感器融合的应用:
第三个代码案例展示了如何将来自不同传感器的测量值进行融合。通过结合多个测量值,EKF能够提供更为准确的状态估计,减少单一传感器噪声对估计结果的影响。这在实际应用中,尤其是移动设备的定位和导航领域,具有重要意义。
调试与优化的重要性:
在实际应用中,EKF的性能依赖于过程噪声和测量噪声的协方差矩阵(Q和R)的设置。通过调试这些参数,可以优化滤波效果,提高系统的响应速度和稳定性。

在这里插入图片描述
4、使用EKF进行电机位置估计

#include <SimpleFOC.h>
#include <Wire.h>

// 定义电机和传感器
BLDCMotor motor = BLDCMotor(7);
BLDCDriver3PWM driver = BLDCDriver3PWM(9, 10, 11);
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);

// EKF参数
float x[2] = {0, 0}; // 状态变量 [位置, 速度]
float P[2][2] = {{1, 0}, {0, 1}}; // 状态协方差矩阵
float Q[2][2] = {{0.1, 0}, {0, 0.1}}; // 过程噪声协方差矩阵
float R = 0.1; // 测量噪声协方差

void setup() {
  Serial.begin(115200);

  // 初始化电机和传感器
  sensor.init();
  motor.linkSensor(&sensor);
  driver.voltage_power_supply = 12;
  driver.init();
  motor.linkDriver(&driver);
  motor.controller = MotionControlType::angle;

  motor.PID_angle.P = 0.2;
  motor.PID_angle.I = 0.1;
  motor.PID_angle.D = 0.0;
  motor.P_angle.output_ramp = 1000;
  motor.LPF_angle.Tf = 0.01;

  motor.useMonitoring(Serial);
  motor.init();
  motor.initFOC();
}

void loop() {
  // 读取传感器数据
  float z = sensor.getAngle();

  // EKF预测步骤
  float x_pred[2] = {x[0] + x[1] * 0.1, x[1]};
  float P_pred[2][2] = {
    {P[0][0] + P[0][1] * 0.1 + P[1][0] * 0.1 + P[1][1] * 0.01 + Q[0][0], P[0][1] + P[1][1] * 0.1},
    {P[1][0] + P[1][1] * 0.1, P[1][1] + Q[1][1]}
  };

  // EKF更新步骤
  float y = z - x_pred[0];
  float S = P_pred[0][0] + R;
  float K[2] = {P_pred[0][0] / S, P_pred[1][0] / S};

  x[0] = x_pred[0] + K[0] * y;
  x[1] = x_pred[1] + K[1] * y;
  P[0][0] = P_pred[0][0] - K[0] * P_pred[0][0];
  P[0][1] = P_pred[0][1] - K[0] * P_pred[0][1];
  P[1][0] = P_pred[1][0] - K[1] * P_pred[0][0];
  P[1][1] = P_pred[1][1] - K[1] * P_pred[0][1];

  // 应用估计的角度
  motor.move(x[0]);

  // 打印结果
  Serial.print("估计位置: ");
  Serial.print(x[0]);
  Serial.print(" 实际位置: ");
  Serial.println(z);

  motor.monitor();
  delay(100);
}

5、使用EKF进行电机速度估计

#include <SimpleFOC.h>
#include <Wire.h>

// 定义电机和传感器
BLDCMotor motor = BLDCMotor(7);
BLDCDriver3PWM driver = BLDCDriver3PWM(9, 10, 11);
MagneticSensorI2C sensor = MagneticSensorI2C(AS5600_I2C);

// EKF参数
float x[2] = {0, 0}; // 状态变量 [速度, 加速度]
float P[2][2] = {{1, 0}, {0, 1}}; // 状态协方差矩阵
float Q[2][2] = {{0.1, 0}, {0, 0.1}}; // 过程噪声协方差矩阵
float R = 0.1; // 测量噪声协方差

void setup() {
  Serial.begin(115200);

  // 初始化电机和传感器
  sensor.init();
  motor.linkSensor(&sensor);
  driver.voltage_power_supply = 12;
  driver.init();
  motor.linkDriver(&driver);
  motor.controller = MotionControlType::velocity;

  motor.PID_velocity.P = 0.2;
  motor.PID_velocity.I = 0.1;
  motor.PID_velocity.D = 0.0;
  motor.PID_velocity.output_ramp = 1000;
  motor.LPF_velocity.Tf = 0.01;

  motor.useMonitoring(Serial);
  motor.init();
  motor.initFOC();
}

void loop() {
  // 读取传感器数据
  float z = sensor.getVelocity();

  // EKF预测步骤
  float x_pred[2] = {x[0] + x[1] * 0.1, x[1]};
  float P_pred[2][2] = {
    {P[0][0] + P[0][1] * 0.1 + P[1][0] * 0.1 + P[1][1] * 0.01 + Q[0][0], P[0][1] + P[1][1] * 0.1},
    {P[1][0] + P[1][1] * 0.1, P[1][1] + Q[1][1]}
  };

  // EKF更新步骤
  float y = z - x_pred[0];
  float S = P_pred[0][0] + R;
  float K[2] = {P_pred[0][0] / S, P_pred[1][0] / S};

  x[0] = x_pred[0] + K[0] * y;
  x[1] = x_pred[1] + K[1] * y;
  P[0][0] = P_pred[0][0] - K[0] * P_pred[0][0];
  P[0][1] = P_pred[0][1] - K[0] * P_pred[0][1];
  P[1][0] = P_pred[1][0] - K[1] * P_pred[0][0];
  P[1][1] = P_pred[1][1] - K[1] * P_pred[0][1];

  // 应用估计的速度
  motor.move(x[0]);

  // 打印结果
  Serial.print("估计速度: ");
  Serial.print(x[0]);
  Serial.print(" 实际速度: ");
  Serial.println(z);

  motor.monitor();
  delay(100);
}

要点解读
传感器初始化:在每个案例中,传感器(如MPU6050)都需要在setup()函数中进行初始化。这确保了传感器能够正确地开始工作。
数据读取:通过调用传感器库中的函数(如mpu.getAcceleration()),从传感器中读取原始数据。这些数据通常包括加速度和角速度。
卡尔曼滤波器初始化:每个案例中都创建了卡尔曼滤波器对象(如KalmanFilter kalmanX),并在循环中使用这些对象来处理传感器数据。
数据融合与估计:使用卡尔曼滤波器的getAngle()方法,将传感器的原始数据进行融合和估计,得到更准确的角度或位置数据。
数据输出:通过Serial.print()函数,将估计结果输出到串口监视器,便于实时查看和调试。

注意,以上案例只是为了拓展思路,仅供参考。它们可能有错误、不适用或者无法编译。您的硬件平台、使用场景和Arduino版本可能影响使用方法的选择。实际编程时,您要根据自己的硬件配置、使用场景和具体需求进行调整,并多次实际测试。您还要正确连接硬件,了解所用传感器和设备的规范和特性。涉及硬件操作的代码,您要在使用前确认引脚和电平等参数的正确性和安全性。

在这里插入图片描述

「雕爷编程Arduino动手做寻迹的实验可以使用TCRT5000红外反射光电开关寻迹传感器模块。这个传感器模块可以通过检测周围的光反射来进行寻迹操作。你可以将这个模块连接到mBot的主控板mCore V1.5的RJ25接口上,因为mBot的主控板兼容Arduino系统,所以你可以使用Arduino编程语言来控制mBot进行寻迹操作。请参考【Arduino】168种传感器模块系列实验中的实验六十六,该实验详细介绍了如何使用TCRT5000红外反射光电开关寻迹传感器模块进行寻迹。祝你成功完成实验!<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【雕爷编程Arduino动手做(194)---makeblock mbot 主控板2](https://blog.csdn.net/weixin_41659040/article/details/132141677)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [【雕爷编程Arduino动手做(65)---红外寻迹传感器](https://blog.csdn.net/weixin_41659040/article/details/106604080)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驴友花雕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值