This is a generic, practical approach that can be applied to most machine learning problems:
下一步是对问题进行分类。
按输入分类:如果是标记数据,则是监督学习问题。 如果它是用于查找结构的未标记数据,那么这是一个无监督的学习问题。 如果解决方案意味着通过与环境交互来优化目标函数,那么这就是强化学习问题。
按输出分类:如果模型的输出是数字,那就是回归问题。 如果模型的输出是一个类,那就是分类问题。 如果模型的输出是一组输入组,则这是一个聚类问题。
数据本身不是最终游戏,而是整个分析过程中的原材料。 成功的公司不仅可以捕获并访问数据,而且还能够获得能够推动更好决策的洞察力,从而实现更好的客户服务,竞争优势和更高的收入增长。 理解数据的过程在为正确的问题选择正确算法的过程中起着关