在Retrived Augmented Generation (RAG)的核心概念是函数调用(function calling)。
但这究竟是什么,为什么如此重要,开发人员又如何有效实施它呢?让我们来深入探讨一下!
什么是函数调用(function calling)?
函数调用是一种机制,通过它在程序中调用函数或方法来执行特定任务。在RAG的背景下,它涉及利用函数从大型语料库中检索相关信息,然后利用这些信息生成连贯且在语境中准确的响应。
下面是一个基本的函数调用的例子。
当然,在RAG场景下,函数调用的具体写法是有要求的,这里以langchain为例。
LangChain 是用于开发链式应用程序的一种框架,特别是在处理与自然语言处理和生成有关的任务时十分有用。它的强大之处在于能轻松集成多个语言模型(如GPT-3、BERT等),并将不同步骤链起来以完成复杂任务。
编写一个简单的 Function Call 例子
下面给出一个基本的例子,展示如何用 LangChain 编写一个函数调用。例如,我们将实现一个基于 LangChain 的简单计算器,完成两个数字的加法运算。
安装依赖
确保你已经安装了 LangChain,可以使用下面的命令进行安装:
pip install langchain
编写代码
from langchain.chains import SimpleChain
from langchain.prompts import PromptTemplate
from langchain.output_parsers import NumericalOutputParser
# 定义一个简单的加法函数
def add(a, b):
return a + b
# 创建一个处理器, 用于调用 `add` 函数
class AddProcessor:
def process(self, inputs, **kwargs):
a = inputs['a']
b = inputs['b']
return add(a, b)
# 定义链的输入和输出示例
input_example = {'a': 3, 'b': 5}
output_example = 8
# 定义链的提示模板
prompt = PromptTemplate(
input_variables=['a', 'b'],
template="What is the sum of {a} and {b}?"
)
# 定义链
add_chain = SimpleChain(
prompt=prompt,
processor=AddProcessor(),
output_parser=NumericalOutputParser(),
input_example=input_example,
output_example=output_example
)
# 调用链,传递输入参数
result = add_chain({'a': 3, 'b': 5})
print(result) # 输出 8
为什么在RAG中函数调用很重要?
函数调用允许精确检索相关数据,然后用于生成更准确和在语境中更恰当的响应。
下面给一个简单的示例。
函数调用可以从外部数据源动态获取最新的信息,而不是依赖于模型预先训练时的固定数据。这对于需要实时或最新信息的应用尤为重要,如新闻摘要、股票分析、天气预报等。
示例
当用户询问股票价格时,可以调用一个API来获取最新的市场数据:
def get_stock_price(symbol):
response = requests.get(f"https://api.stockmarket.com/price?symbol={symbol}")
return response.json()
# 在RAG框架中使用:
current_price = get_stock_price("AAPL")
如何在RAG中实施函数调用?
1. 首先定义处理特定任务的函数,如数据检索、预处理和响应生成。确保这些函数具有清晰的输入和输出参数。
2. 使用诸如密集向量检索或传统基于关键字的搜索等技术来实施检索机制。Elasticsearch或FAISS等工具在这里可能非常宝贵。
3. 将检索到的信息与生成模型(如GPT或BERT)集成,以生成最终的响应。这通常涉及在使用检索数据增强的数据集上对生成模型进行微调。
4. 持续监视和优化函数调用的性能,以确保它们运行高效,特别是在数据规模扩大时。