空间直角坐标系、左手坐标系、右手坐标系

1、空间直角坐标系

  1. 过空间定点O作三条互相垂直的数轴,它们都以O为原点,具有相同的单位长度.这三条数轴分别称为X轴(横轴).Y轴(纵轴).Z轴(竖轴),统称为坐标轴。

  2. 各轴之间的顺序要求符合右手法则,即以右手握住Z轴,让右手的四指从X轴的正向以90度的直角转向Y轴的正向,这时大拇指所指的方向就是Z轴的正向。这样的三个坐标轴构成的坐标系称为右手空间直角坐标系。与之相对应的是左手空间直角坐标系。一般在数学中更常用右手空间直角坐标系,在其他学科方面因应用方便而异。

  3. 三条坐标轴中的任意两条都可以确定一个平面,称为坐标面.它们是:由X轴及Y轴所确定的XOY平面;由Y轴及Z轴所确定的YOZ平面;由X轴及Z轴所确定的XOZ平面.这三个相互垂直的坐标面把空间分成八个部分,每一部分称为一个卦限.位于X,Y,Z轴的正半轴的卦限称为第一卦限,从第一卦限开始,在XOY平面上方的卦限,按逆时针方向依次称为第二,三,四卦限;第一,二,三,四卦限 下方的卦限依次称为第五,六,七,八卦限。
    在这里插入图片描述

2、右手坐标系

在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕拇指X轴的正方向,食指Y轴的正方向,中指Z轴的正方向。要确定轴的正旋转方向,如下图所示,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向。
在这里插入图片描述

3、左手坐标系

手背对自己,伸出左手,让拇指和食指成“L”形,大拇指向右,食指向上。其余的手指指向前方。这样就建立了一个左手坐标系。拇指、食指和其余手指分别代表x,y,z轴的正方向。判断方法:在空间直角坐标系中,让左手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指能指向z轴的正方向,则称这个坐标系为左手直角坐标系.反之则是右手直角坐标系
在这里插入图片描述

4、左手坐标系和右手坐标系比较

手坐标系和右手坐标系,左手坐标系是X轴向右,Y轴向上,Z轴向前,右手坐标系的Z轴正好相反,是指向“自己”的,在计算机中通常使用的是左手坐标系,而数学中则通常使用右手坐标系计算机里面其实很多也有用右手坐标系,这个只是根据实际应用不同,没有说哪个比较好
在这里插入图片描述

### 坐标系变换原理 在自动驾驶技术和3D图形学领域,坐标系变换是一个至关重要的概念。为了使传感器数据能够被有效利用并实现车辆的精准控制,在不同的坐标系之间进行数据转换变得必不可少[^1]。 #### 不同类型的坐标系及其关系 通常情况下,存在多种坐标系用于描述物体的位置和方向,比如世界坐标系、相机坐标系(或称为观察坐标系)、局部坐标系等。这些坐标系之间的相对位置和姿态决定了如何从一个坐标系映射到另一个坐标系的数据。 - **世界坐标系**:这是全局参照框架,所有的其他坐标系都相对于此来定义。 - **观察坐标系/相机坐标系**:特定于某个视角下的坐标系统,常用来表示图像采集设备所看到的内容。 - **局部坐标系**:关联于具体对象本身的坐标体系,如汽车自身的坐标系。 当需要将一点或多点从一种坐标系转移到另一种时,则需要用到一系列线性代数运算——即所谓的“坐标系变换”。 ### 变换方法详解 对于任意两个给定的空间直角坐标系A和B来说,要完成它们间的互转操作可以采用如下几种方式: #### 使用齐次坐标和平移旋转组合 通过引入第四维w=1的方式扩展传统三维向量成为四维形式[x,y,z,1]^T^,从而允许平移操作作为矩阵乘法的一部分被执行。此时,整个变换过程可以通过构建复合变换矩阵M来进行表达: \[ M = T * R \] 其中\( T=\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y\\ 0& 0 & 1&t_z\\ 0& 0& 0& 1\end{bmatrix}\),代表沿三个轴分别移动距离tx, ty 和 tz 的平移;而 \(R\) 则是由绕各轴依次执行的角度θ组成的旋转矩阵[^2]。 例如,在Unity引擎中,默认按照 Z-X-Y 的顺序施加旋转效果。 另外值得注意的是,如果遇到左手坐标系右手坐标系间互相转化的情况,还需要额外考虑可能存在的镜像翻转需求。这可通过加入适当的比例因子(-1)至相应维度上来达成目的[^3]。 ```cpp // C++代码片段展示了一个简单的坐标系变换函数 Eigen::Matrix4f Transform(const Eigen::Vector3f& translation, const Eigen::AngleAxisf& rotation) { // 创建平移矩阵 Eigen::Translation<float, 3> trans(translation); // 构建完整的仿射变换矩阵 return (trans * rotation).matrix(); } ``` ### 实际应用场景举例 以无人驾驶为例,激光雷达(LiDAR)获取的距离信息最初是以LiDAR自身为中心建立起来的小范围局部坐标系内记录下来的。然而为了让中央处理单元理解该信息的意义所在,并据此做出决策规划路径,就必须先把这些原始读数依照事先校准好的参数调整成统一的世界坐标系下对应的物理空间位置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值