5-9 环与域

思维导图: 

 

环与域的基础概念

  1. 环的定义:环是一个代数系统,包含两个二元运算(通常称为加法和乘法),满足特定的性质,如加法构成阿贝尔群,乘法构成半群,以及乘法对加法可分配。
  2. 整数集、有理数集等作为环的例子:这些集合在适当的加法和乘法下构成环。

特定类型的环

  1. 交换环与含幺环:如果环的乘法运算是可交换的,则称为交换环;如果环包含乘法么元(即乘法单位元素),则称为含幺环。
  2. 整环:如果环是可交换的,无零因子(即非零元素的乘积不为零),则称为整环。
  3. :如果环中除了加法零元素外,所有元素构成乘法群,则该环称为域。

环的性质和运算规则

  1. 环的基本性质:如零元素的乘法性质、逆元素的乘法性质、乘法的分配律等。
  2. 整环和域的关系:所有域都是整环,但不是所有整环都是域。

同态和代数系统间的关系

  1. 同态映射:从一个代数系统到另一个系统的映射,保持运算的结构。
  2. 环的同态映射与同态象:如果映射保持环的结构,即保持两个运算的性质,则该映射是环的同态映射,而映射的结果是同态象。

应用实例

  1. 多项式环和矩阵环:如实数系的多项式构成的环,以及实数矩阵构成的环。
  2. Klein四元群的环结构:描述Klein四元群的环结构。
  3. 环的同态象实例:例如,将自然数映射到偶数和奇数的环。

这些笔记涵盖了本章的主要概念和定义,以及一些基本的应用实例,适合用于复习和参考。

 

 定义:

定义5-9.1描述了环的三个基本性质:

  1. 加法阿贝尔群:环中的加法运算满足交换律和结合律,存在加法单位元(通常为0),并且每个元素有加法逆元(负元素)。
  2. 乘法半群:环中的乘法运算满足结合律,但不要求存在乘法单位元(1),也不要求乘法运算是可交换的。
  3. 分配律:环中的乘法运算对加法运算是可分配的,即对于环中的任意元素 a,b,c,满足 a⋅(b+c)=a⋅b+a⋅c 和 (b+c)⋅a=b⋅a+c⋅a。

这些性质共同构成了环的定义,并为环的进一步研究提供了基础。在数学文献中,环的定义是广泛接受的,并用作研究更复杂数学结构(如域、向量空间等)的基础。

 

 定理:

定理5-9.1 我们将逐条证明这些性质:

  1. a⋅0=0⋅a=0

    • 证明:对于环中的任意元素 a 和加法单位元 00(加法幺元),有 a⋅0=a⋅(0+0)=a⋅0+a⋅0 通过加法逆元的性质,我们可以从等式两边减去 a⋅0 得到 a⋅0=0。同理可以证明 0⋅a=0。
  2. a⋅(−b)=(−a)⋅b=−(a⋅b)

    • 证明:使用分配律,我们有 a⋅(−b)+a⋅b=a⋅(−b+b)=a⋅0=0 这表明 a⋅(−b) 是 ⋅b 的加法逆元,因此 a⋅(−b)=−(a⋅b)。类似地可以证明 (−a)⋅b=−(a⋅b)。
  3. (−a)⋅(−b)=a⋅b

    • 证明:利用上一点的结果, (−a)⋅(−b)=−(−a⋅b) 因为 −(−a⋅b) 是 −a⋅b 的加法逆元,而 −a⋅b 是 a⋅b 的加法逆元,所以 −(−a⋅b) 等于 a⋅b。
  4. a⋅(b−c)=a⋅b−a⋅c(b−c)⋅a=b⋅a−c⋅a

    • 证明:使用分配律, a⋅(b−c)=a⋅b−a⋅c 因为 b−c=b+(−c),所以 a⋅(b−c)=a⋅b+a⋅(−c),根据第2点,a⋅(−c)=−(a⋅c)。同理可证另一半。

这些性质的证明基于环的基本定义,即环中的加法构成一个阿贝尔群,乘法满足结合律,并且乘法对加法满足分配律。这些性质不仅在抽象代数的研究中非常重要,而且在实际应用中也非常有用,例如在解线性方程组、多项式运算等方面。

定理 5-9.2: 在有限整环中,如果 A⋅B=0 且 A=0,那么必有 B=0。这表明有限整环没有零因子。

证明过程:

  1. 整环的性质: 首先,整环是一个特殊的环,在整环中加法构成阿贝尔群,乘法是可结合的,且乘法对加法满足分配律。最重要的是,整环没有零因子,即若 a⋅b=0,则 a=0 或 b=0。

  2. 有限整环中的元素: 在有限整环中,我们考虑环中的任意非零元素 a。对于这样的 a,考虑所有可能的乘积 a⋅1,a⋅2,a⋅3,…,a⋅n,其中 1,2,3,…,n 是环中的元素。

  3. 乘积的唯一性: 由于整环没有零因子,这些乘积都是唯一的。也就是说,这些乘积不会重复。因为如果 a⋅m=a⋅n 且 a=0,则由整环的性质,m=n。

  4. 逆元的存在性: 由于乘积的唯一性,以及环的有限性,对于每个非零元素 a,必存在一个元素 b 使得 =1a⋅b=1(即乘法单位元)。这意味着每个非零元素 a 都有一个乘法逆元。

  5. 结论: 因此,有限整环中的每个非零元素都有逆元,这是域的一个定义特征。所以,有限整环必然是一个域。

总结来说,这个定理的关键点在于展示了有限整环的每个非零元素都有乘法逆元,因而满足域的定义。这是一个非常重要的结果,因为它在数学中的许多领域,如数论和代数几何,都有着广泛的应用。

定理 5-9.3: 任何域都是整环。

证明过程:

  1. 域的基本性质: 首先,我们回顾一下域的定义。一个域是一个代数系统,其中加法构成一个阿贝尔群,乘法(在非零元素上)也构成一个阿贝尔群,并且乘法对加法满足分配律。

  2. 加法群: 由于域中的加法构成阿贝尔群,这意味着加法是闭合的、结合的、存在加法单位元(即 0),每个元素存在加法逆元,并且加法是可交换的。这些性质直接符合整环关于加法的要求。

  3. 乘法的性质: 在域中,除了加法单位元 0 之外的所有元素形成一个关于乘法的阿贝尔群。这意味着乘法在这些元素上是闭合的、结合的、存在乘法单位元(即 1),每个非零元素存在乘法逆元,并且乘法是可交换的。

  4. 无零因子: 由于在域中,每个非零元素都有乘法逆元,因此域中不存在零因子。即若 �⋅�=0a⋅b=0 且 �≠0a=0,则 �b 必须等于 0。这是因为如果 �≠0b=0,那么 �b 有逆元 �−1b−1,所以 �=�⋅(�⋅�−1)=(�⋅�)⋅�−1=0⋅�−1=0a=a⋅(b⋅b−1)=(a⋅b)⋅b−1=0⋅b−1=0,这与 �≠0a=0 矛盾。

  5. 分配律: 由于域中的乘法对加法满足分配律,这也是整环所要求的。

  6. 结论: 由以上所有点,我们可以得出结论:任何域都满足整环的所有性质,因此任何域都是一个整环。

总结来说,这个定理强调了域作为一种特殊类型的整环,其性质不仅满足整环的定义,而且由于其在乘法上的附加性质(每个非零元素都有逆元),使得域在代数结构中占有特殊位置。这个理论在抽象代数和数学的其他领域中是非常重要的基础概念。

定理 5-9.4: 任何有限整环都是域。

证明过程:

  1. 整环的性质: 首先,我们了解一下整环的定义。一个整环是一个代数系统,其中加法构成阿贝尔群,乘法在非零元素上闭合、结合,整环不含有零因子(即如果 �⋅�=0a⋅b=0,则 �=0a=0 或 �=0b=0),并且乘法对加法满足分配律。

  2. 有限性的应用: 在有限整环中,取任意非零元素 �a,考虑所有由 �a 乘以整环中的每个元素(包括 �a 自身)所得到的集合。由于整环是有限的,这个集合也是有限的。

  3. 无零因子推导唯一性: 由于整环不含零因子,所以对于不同的元素 �x 和 �y,我们有 �⋅�≠�⋅�a⋅x=a⋅y。这意味着乘以 �a 的操作在整环中是一个双射。

  4. 存在乘法逆元: 因为乘以 �a 的操作是双射,它必然映射某个元素 �b 到乘法单位元(即 1),即 �⋅�=1a⋅b=1。因此,每个非零元素 �a 都有一个乘法逆元 �b,这满足了域的定义。

  5. 结论: 因此,每个非零元素在有限整环中都有一个乘法逆元,所以这个有限整环实际上是一个域。

这个定理非常重要,因为它说明了在有限的情况下,整环的性质自动保证了每个非零元素都有逆元,从而构成一个域。这是数论和抽象代数中的一个关键结果,对于理解和应用有限域(如在密码学和编码理论中)至关重要。

定理 5-9.5: 如果 �:�→�f:A→B 是由环 �A 到环 �B 的一个同态映射,则 �B 是 �A 的一个同态象,并且 �B 也是一个环。

证明过程:

  1. 同态映射的性质: 首先,需要理解同态映射 �f 的性质。同态映射保留了环的运算结构,即对于环 �A 中的所有元素 �,�a,b,都满足 �(�+�)=�(�)+�(�)f(a+b)=f(a)+f(b) 和 �(�⋅�)=�(�)⋅�(�)f(a⋅b)=f(a)⋅f(b)。

  2. 证明 �B 的加法结构: 由于 �f 是同态映射,所以 �B 中的加法运算是封闭的。也就是说,对于 �B 中的任意两个元素 �,�x,y,存在 �A 中的元素 �,�a,b 使得 �=�(�)x=f(a) 和 �=�(�)y=f(b)。根据 �f 的同态性质,我们有 �+�=�(�)+�(�)=�(�+�)x+y=f(a)+f(b)=f(a+b),这表明 �+�x+y 也在 �B 中。

  3. 证明 �B 的乘法结构: 同理,对于 �B 中的任意两个元素 �,�x,y,我们有 �⋅�=�(�)⋅�(�)=�(�⋅�)x⋅y=f(a)⋅f(b)=f(a⋅b)。这说明 �B 中的乘法也是封闭的。

  4. 保留单位元和逆元: 如果 �A 中有加法单位元和乘法单位元,同态映射 �f 也会将这些元素映射到 �B 中的对应元素。同样,如果 �A 中的元素有加法和乘法逆元,由于 �f 的性质,这些逆元也会被正确地映射到 �B 中。

  5. 结论: 综上所述,由于 �B 中的加法和乘法都是封闭的,并且 �f 保留了加法和乘法的结构,因此 �B 满足环的定义,即 �B 也是一个环。

这个定理对于理解和构建数学结构(特别是在代数和数论中)非常重要,因为它允许我们通过同态映射在不同的环之间建立联系,并确保这种联系在代数结构上是有意义的。

学到了什么?

数学思想

  1. 结构保留: 在代数学中,同态映射的核心思想是保持结构。这意味着,即使我们从一个环映射到另一个环,这个映射应该保留基本的代数运算结构。

  2. 封闭性: 在检查一个集合是否构成环或其他代数结构时,封闭性是一个关键因素。这意味着集合中任意两个元素的运算结果仍然属于这个集合。

  3. 构建与分解: 通过了解更复杂的结构(如环)可以从更简单的结构(如群)构建起来,我们学习到如何分步构建复杂的数学对象。

数学思维

  1. 抽象思维: 证明过程中,我们需要抽象地思考,不仅关注具体的元素和运算,而且要关注这些元素和运算如何在更广泛的框架下相互作用。

  2. 推广与特化: 在数学中,从特定实例到一般性质的推广,以及从一般性质到特定情况的特化,是一种常见的思维方式。

数学证明方法

  1. 构造性证明: 通过构建具体的例子或构造来展示一个性质的存在或可能性。

  2. 反证法: 通过假设结论的否定并导致矛盾来证明一个声明的正确性。

  3. 直接证明: 通过逻辑推理和已知事实直接得出结论。

  4. 归纳法: 使用归纳推理,特别是在处理有关序列或集合的属性时。

数学证明处理技巧

  1. 等价关系的应用: 在证明涉及集合和子集时,使用等价关系来简化问题并明确元素之间的关系。

  2. 映射与函数的性质: 在处理同态映射时,深入理解映射和函数的基本性质,如保留运算、映射的封闭性等。

  3. 利用已知结构: 在构建新的数学对象时,利用已知的数学结构(如群、环)的性质来简化证明。

  4. 注意定义与性质: 在证明中,严格遵循定义和已知性质,确保每一步推理都基于严谨的数学逻辑。

这些思想、方法和技巧不仅适用于环论和代数,而且在整个数学领域都是非常重要的。通过学习和应用这些,我们可以更好地理解复杂的数学概念,提高解决问题的能力。

 

 

 

 

 

 

 

 

总结:

重点

  1. 环的定义与性质: 理解环的基本定义,特别是关于环的两个基本运算(加法和乘法)如何结合,以及它们的性质(如封闭性、结合律、分配律)。

  2. 特殊类型的环: 区分不同类型的环,例如交换环、含幺环、整环和域,以及它们之间的区别。

  3. 同态映射: 理解同态映射的概念,特别是它如何在保持运算结构的同时从一个环映射到另一个环。

  4. 重要定理与结果: 理解如定理5-9.3(域一定是整环)和定理5-9.4(有限整环必定是域)这样的重要结论。

难点

  1. 同态映射的理解: 同态映射的概念可能较难理解,特别是它如何保持运算的结构。

  2. 环与域的区别: 理解环、整环和域之间的细微差别可能会比较困难,尤其是它们的运算规则和性质。

  3. 证明方法: 一些定理和概念的证明可能涉及复杂的逻辑推理,对于初学者来说可能比较难以理解。

易错点

  1. 混淆概念: 容易混淆环、整环和域的定义,尤其是它们各自的特殊性质。

  2. 忽略重要条件: 在考虑某个代数系统是否为环或域时,可能会忽视一些关键条件,如运算的封闭性、结合律、分配律等。

  3. 同态映射的误用: 错误地应用同态映射,尤其是在不满足同态性质的情况下强行应用。

  4. 运算性质的误解: 对于环中加法和乘法的性质理解不足,特别是如何在证明中正确应用这些性质。

理解这一节的内容需要扎实的代数基础和逻辑推理能力。掌握基本概念和定理,同时注意避免上述易错点,可以帮助深入理解环与域的结构和性质。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
Joseph问题是一道经典的数学问题,它可以用来模拟约瑟夫斩首游戏。在此游戏中,有 n 个人围成一圈,从第一个人开始报数,报到 m 的人出圈,然后从下一个人重新开始报数,直到最后只剩下一个人。 下面是用 C 语言实现 Joseph 问题的代码: ```c #include <stdio.h> #include <stdlib.h> typedef struct node { int data; struct node *next; } Node; void joseph_ring(int n, int m) { int i, count; Node *p, *q, *head; head = (Node *)malloc(sizeof(Node)); head->data = 1; p = head; for (i = 2; i <= n; i++) { q = (Node *)malloc(sizeof(Node)); q->data = i; p->next = q; p = q; } p->next = head; p = head; while (p->next != p) { count = 1; while (count != m) { q = p; p = p->next; count++; } q->next = p->next; printf("%d ", p->data); free(p); p = q->next; } printf("%d\n", p->data); free(p); } int main() { int n, m; printf("请输入总人数n和出局数字m:\n"); scanf("%d%d", &n, &m); printf("出局顺序为:"); joseph_ring(n, m); return 0; } ``` 代码实现的思路如下: 1. 定义一个结构体 Node,表示链表中的节点,包含数据 data 和指针 next。 2. 定义一个函数 joseph_ring,用于求解 Joseph 问题。 3. 在函数中,首先创建一个头节点 head,并将其指针指向自身。 4. 通过循创建链表中的 n 个节点,每个节点的数据为 i,将节点插入到链表尾部,并更新 p 指针指向链表的最后一个节点。 5. 将链表的尾节点指针指向头节点,形成循链表。 6. 从头节点开始遍历链表,直到链表中只剩下一个节点。 7. 在每次遍历中,通过循找到报数为 m 的节点,并将其从链表中删除,释放其空间。 8. 输出删除节点的数据。 9. 更新链表中的指针,继续遍历链表,直到链表中只剩下一个节点。 10. 输出最后剩下的节点的数据。 注意事项: 1. 在使用 malloc 函数分配内存时,需要对分配结果进行检查,判断是否分配成功。 2. 在使用完节点后,需要使用 free 函数将其空间释放,避免内存泄漏。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值