量子力学之基本假设

量子力学基于态的叠加原理,其中物质的态可以通过右矢量表示。线性算符对应可观察量,其本征值和本征矢量在理论中扮演关键角色。力学系统的任何态都与右矢量方向相关,而左矢与右矢之间存在一一对应关系。实线性算符的本征值和本征矢量具有特定的正交性和归一化性质,它们构成了可观察量的基础。测量可观察量会将系统置入其本征态,且对易的可观察量的共同本征态组成完全集,反映了量子系统的相容性。
摘要由CSDN通过智能技术生成

态的叠加原理

物质的波粒二象性使人们相信,经典力学的运动规律,甚至于其概念都不足以给我们提供对原子事件的描述
科学所研究的只是可观察的事物,同时,只有让对象于某种外界影响相互作用,我们才能观察它。这样,观察的动作必然地要伴随着对所观察的对象的某些干扰。
某些哲学上的想法认为物质是无限可分的,然而为了建立关于物质终极结构的理论,我们需要给大小以绝对的含义,因此必须假定:对我们观察力的精细程度和对伴随着的干扰的微小程度有一个限度。这个限度是事物本质中所固有的,观察者方面改进技术或提高技巧,都不可能超越这个限度。
如果系统是小的,我们不能在观察它时而不产生严重的干扰,因此,我们不能期望在我们的观察结果之间找到任何因果性的联系。在计算观察出的结果时就有不可避免的不确定性出现,一般说来,理论使我们能够算出的只是,当进行观察时能获得某个特定结果的几率。

叠加形成的态所具有的中间性质,是通过由观察得出特定结果的几率处于原来两个态的相应几率的中间而表现出来,而不是观察结果本身处于原来两个态的相应结果的中间。

关于光子的偏振和干涉的态叠加和几率解释并未让所有人满意。他们的主要问题在于

  1. 光子能够同时处于两种状态的想法很奇怪,而且,这个奇怪的想法并没有给予基本的单个光子过程以任何令人满意的图像。
  2. 按照传统的波动光学也能得到对偏振和干涉的同样的理解。这种奇怪的想法似乎并无用处。

狄拉克对这两个问题的回答是

  1. 物理科学的主要目的并不是提供图像,而是以公式表达那些支配现象的规律,并利用这些规律去发现新的现象。
  2. 偏振和干涉的实验还比较简单,因此可以与初等理论联系起来。量子力学可以给出在更复杂情况下的描述方法,对于这些简单的情况也能适用。

数学表述

态的这种叠加性质,最明显的是可以用数学中的矢量来表示。事实上,必须使用无限维空间中的矢量,才足以表达一般力学系统。与系统的态相联系的矢量称为“右矢”,用符号 ∣ ⟩ ∣⟩ 来表示。态A就记作 ∣ A ⟩ ∣A⟩ A
我们假定,在一特定时刻力学系统的每一个态相应于一右矢量,其相应关系是这样的:一态是由于某些其他态的叠加而得,当且仅当它相应的右矢量能表示为与这些其他态相应的诸右矢量的线性组合。
另外,我们还要假定,一个态与其自身叠加不能形成任何新的态,而只能仍得到原来的态。因为
c 1 ∣ A ⟩ + c 2 ∣ A ⟩ = ( c 1 + c 2 ) ∣ A ⟩ c_1∣A⟩ + c_2∣A⟩ = (c_1 + c_2)∣A⟩ c1A+c2A=(c1+c2)A
因此,除了 c 1 + c 2 = 0 c_1 + c_2 = 0 c1+c2=0的这种情况,所得的态必须与原来的态相同。于是我们得出结论:如果相应于一个态的右矢量乘以任何不为零的复数,则得到的右矢量相应于同一态。
这样,一个态是由一个右矢量的方向所确定的,其长度则是无关紧要的。力学系统的所有的态与右矢量的一切可能方向,是一一对应的,而在右矢量 ∣ A ⟩ ∣A⟩ A与右矢量 − ∣ A ⟩ -∣A⟩ A的方向之间也没有任何区别。
考虑如下式子
c 1 ∣ A ⟩ + c 2 ∣ B ⟩ = ∣ R ⟩ c_1∣A⟩ + c_2∣B⟩ = ∣R⟩ c1A+c2B=R
可以看出如果 c 1 , c 2 c_1, c_2 c1,c2乘以相同的因子,则右矢量 ∣ R ⟩ ∣R⟩ R不变,因此右矢量 ∣ R ⟩ ∣R⟩ R仅由两个系数的比决定。两个复数的比对应于一个复数(或者说两个实参量),因此该叠加态的自由度为2。
物理上,一般的偏振态需要用两个参量来描述,一般的平移态也是要用两个参量来描述(振幅比和相位差)。这表明了在上述式子中允许复系数的必要性。因为如果这些系数仅限于实数,那么叠加态将只有一个自由度。

左矢和右矢

在数学上,左矢量定义为右矢量的对偶,记作 ⟨ ∣ ⟨∣ 。除此之外,我们还要假定:在左矢量与右矢量之间有一一对应关系,使得相应于 ∣ A ⟩ + ∣ A ′ ⟩ ∣A⟩ + ∣A'⟩ A+A的左矢量是相应于 ∣ A ⟩ ∣A⟩ A的左矢量与相应于 ∣ A ′ ⟩ ∣A'⟩ A的左矢量之和,而相应于 c ∣ A ⟩ c∣A⟩ cA的左矢量则是相应于 ∣ A ⟩ ∣A⟩ A的左矢量乘以 c ˉ \bar c cˉ c ˉ \bar c cˉ c c c的共轭复数。 这样,相应于 ∣ A ⟩ ∣A⟩ A的左矢量将写成 ⟨ A ∣ ⟨A∣ A

我们的左矢量和右矢量是复量,因为他们能乘以复数,而所得的量仍具有与前相同的性质,但是它们是一种特殊的复量,不能分成实部与虚部。左矢量与其共轭(右矢量)是不同性质的,不能加在一起。为表示这一区别,我们称复数之类的能够分成实部与虚部的复量为“共轭复量”,而称左矢、右矢之类的不能分成实部与虚部的复量为“共轭虚量”。

由于左矢量与右矢量之间是一一对应的,在特定的时刻,我们力学系统的任何态也可以用一左矢量的方向来确定,就像用一右矢量的方向来确定一样。 事实上,整个理论在本质上在左矢量与右矢量之间是对称的。

右矢量 ∣ A ⟩ ∣A⟩ A与左矢量 ⟨ B ∣ ⟨B∣ B的标量积记作 ⟨ B ∣ A ⟩ ⟨B∣A⟩ BA,我们还规定
⟨ B ∣ A ⟩ = ⟨ A ∣ B ⟩ ‾ ⟨B∣A⟩ = \overline{⟨A∣B⟩} BA=AB
如果在其中令 ∣ B ⟩ = ∣ A ⟩ ∣B⟩ = ∣A⟩ B=A,我们就发现数 ⟨ A ∣ A ⟩ ⟨A∣A⟩ AA应该是实数。我们进一步规定,除 ∣ A ⟩ = 0 ∣A⟩ = 0 A=0时外,
⟨ A ∣ A ⟩ > 0 ⟨A∣A⟩ > 0 AA>0

右矢量 ∣ A ⟩ ∣A⟩ A的长度定义为 ⟨ A ∣ A ⟩ \sqrt{⟨A∣A⟩} AA 。当我们有一态,而希望建立一个左矢量或右矢量与之相应时,这时只是这个矢量的方向是已知的,这个矢量本身则还差一个数字因子未决定。选择这个数字因子使矢量的长度为1常常是方便的。这个程序就称为归一化,而如此选择的矢量称为已归一化的。即令如此,这矢量还未完全决定,因为我们还能用模量为1的任何复数乘它而不会改变其长度,也即能用 e i γ e^{i\gamma} eiγ形式的任意数去乘它而不会改变其长度,其中 γ \gamma γ是实数。我们称这个数为相因子。

可观察量

线性算符

前面已经假定,矢量的方向相应于力学系统在某一特定时刻的状态。现在我们进一步假定,线性算符相应于在那个时刻的力学变量。线性算符的共轭算符相应于力学变量的共轭复量。自共轭算符称为实线性算符,相应于实数的力学变量。

本征值与本征矢量

考虑方程
α ∣ P ⟩ = a ∣ P ⟩ \alpha∣P⟩ = a∣P⟩ αP=aP
其中 α \alpha α是线性算符,而 a a a是一个数。这个方程通常的表现形式是: α \alpha α为已知的线性算符,数 a a a和右矢量 ∣ P ⟩ ∣P⟩ P是我们要求的未知量。如果找到这样的数 a a a和右矢量 ∣ P ⟩ ∣P⟩ P满足上述方程,我们就称 a a a为线性算符 α \alpha α的一个本征值,称 ∣ P ⟩ ∣P⟩ P为线性算符 α \alpha α的一个本征右矢。并称 ∣ P ⟩ ∣P⟩ P是属于本征值 a a a的。不难看出,若 ∣ P ⟩ ∣P⟩ P是本征右矢,则它一定属于唯一的 a a a;反过来,对于一个本征值 a a a,则可以有多个本征右矢属于该本征值。事实上,这些本征右矢可以是相关的,也可以是不相关的,它们构成的空间称为本征子空间。

量子力学中,特别关注实线性算符的本征值和本征矢量。有三个重要结果:

  1. 实线性算符的本征值全部是实数。
  2. 联系于实线性算符的本征右矢的本征值,都同时是联系于其本征左矢的本征值。
  3. 实线性算符的任意本征右矢的共轭虚量,都是属于同一本征值的本征左矢;反之亦然。

关于本征值和本征矢量,我们还有如下的正交性定理
实力学变量的两个本征矢量,如果属于不同的本征值,则它们是正交的。

为证明此定理,设 ∣ ξ ′ ⟩ ∣\xi'⟩ ξ ∣ ξ ′ ′ ⟩ ∣\xi''⟩ ξ是实力学变量 ξ \xi ξ的两个相应于本征值 ξ ′ \xi' ξ ξ ′ ′ \xi'' ξ的本征右矢。我们就有
ξ ∣ ξ ′ ⟩ = ξ ′ ∣ ξ ′ ⟩ ,   ξ ∣ ξ ′ ′ ⟩ = ξ ′ ′ ∣ ξ ′ ′ ⟩ \xi∣\xi'⟩ = \xi'∣\xi'⟩, ~ \xi∣\xi''⟩ = \xi''∣\xi''⟩ ξξ=

### 回答1: 学习量子力学基本概念需要从量子力学基本原理开始,其中包括量子力学基本概念、量子力学的数学和物理基础、量子力学的系统性和其他研究方法。除此之外,还可以通过阅读有关量子力学的研究论文和其他资源来深入了解量子力学的原理和技术。 ### 回答2: 掌握量子力学基本概念并不容易,因为它涉及了许多抽象的数学概念和奇特的物理现象。以下是一些学习量子力学基本概念的建议。 首先,建议从量子力学的历史和背景开始学习。了解量子力学的起源和发展有助于我们理解为什么科学家们提出了这样的理论以及它的基本假设。 其次,理解波粒二象性是非常重要的。在量子力学中,粒子既可以呈现出波动性,又可以呈现出粒子性。学习波动粒子的性质,如波长、频率和动量,有助于我们理解量子力学基本概念。 第三,学习量子力学基本数学工具是必不可少的。学习矩阵和向量的运算规则,了解薛定谔方程及其解的意义,理解矢量和算符的概念等等,都是量子力学基本数学工具的一部分。 此外,通过阅读量子力学的经典教材和参考书籍,可以帮助深入理解该领域的基本概念。同时,进行数学推导和演算是巩固知识的好方法。通过解决一些典型问题和例子,可以加深对量子力学基本概念的理解。 另外,量子力学实验是深化理解的关键。了解一些经典的实验,如双缝干涉实验和斯特恩-盖拉赫实验,有助于理解量子力学的奇特现象和观察结果。 最后,不要忘记与其他对量子力学感兴趣的人进行交流和讨论。参加课程、研讨会以及加入学习群体,可以与他人分享思考和疑惑,并从他人的观点中获得启发。 总之,掌握量子力学基本概念需要耐心和坚持。通过了解历史背景,学习波粒二象性,掌握基本数学工具,阅读教材和参考书籍,进行实验和与他人交流,我们能够逐渐掌握量子力学基本概念,从而进一步深入学习和研究这个领域。 ### 回答3: 要掌握量子力学基本概念,可以从以下几个方面入手。 首先,深入了解基本量子力学原理。量子力学基本原理包括波粒二象性、不确定性原理、量子叠加和纠缠等。通过学习量子力学的数学表达和方程式,如薛定谔方程,可以加深对这些基本原理的理解。 其次,学习量子力学的数学工具。量子力学的数学描述主要是以线性代数为基础的。因此,了解和学习线性代数的相关概念和技巧是必不可少的。这包括了矩阵、向量、内积、外积、矢量等。熟悉这些数学工具能够帮助我们更好地理解和运用量子力学的概念。 另外,通过学习和阅读相关的书籍、论文和教材,了解历史发展和基本理论。量子力学的历史发展过程中出现了许多重要的实验和理论突破,了解这些背景有助于我们更好地理解和掌握量子力学基本概念。 此外,进行实验与观察也是掌握量子力学基本概念的重要途径。通过参与实验和观察,我们可以直接体验和验证量子力学的一些现象和理论。这样不仅可以巩固对基本概念的理解,还可以培养独立思考和实验设计能力。 总结起来,要掌握量子力学基本概念需要深入了解基本原理,学习相关的数学工具,了解历史发展和基本理论,并进行实验与观察。通过多种途径的学习和实践,我们就能更好地掌握和应用量子力学基本概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值