量子力学之表象理论
基矢量
前面所有的这些符号,即线性算符、左矢量与右矢量都是抽象的量,为了数学上的进一步发展,把这些抽象的量用具有类似数学性质的数字集合来代替并表述是方便的。进行这个代替的方式不是唯一的,其中的每一个叫做一个表象。代替抽象量的数字集合叫做在此表象中这个抽象量的表示式。
为了在普遍方式下建立表象,我们取左矢量的一个完全集,即这样一个集合,使任何左矢量都能表示为它们的线性组合。这些左矢我们称之为表象的基左矢。如果在一个表象中任何两个基左矢都是正交的,我们就称此表象为正交表象。
我们假定基左矢由一个或多个参量 λ 1 , λ 2 , ⋯ , λ u \lambda_1, \lambda_2, \cdots, \lambda_u λ1,λ2,⋯,λu所标记,且这些参量全都是实数。这样基左矢就可以写成 ⟨ λ 1 λ 2 ⋯ λ u ∣ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣ ⟨λ1λ2⋯λu∣。下面我们来说明正交表象中的基左矢和对易可观察量的共同的本征左矢之间的关系。
取一右矢 ∣ a ⟩ ∣a⟩ ∣a⟩,其在上述基左矢下的表示式为 ⟨ λ 1 λ 2 ⋯ λ u ∣ a ⟩ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣a⟩ ⟨λ1λ2⋯λu∣a⟩,现在令 ∣ b ⟩ ∣b⟩ ∣b⟩为满足下式的右矢
⟨ λ 1 λ 2 ⋯ λ u ∣ b ⟩ = λ 1 ⟨ λ 1 λ 2 ⋯ λ u ∣ a ⟩ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣b⟩ = \lambda_1⟨\lambda_1 \lambda_2 \cdots \lambda_u∣a⟩ ⟨λ1λ2⋯λu∣b⟩=λ1⟨λ1λ2⋯λu∣a⟩
因为它们的表示式直接这样的线性关系,我们可以假定存在一线性算符 L 1 L_1 L1使得
∣ b ⟩ = L 1 ∣ a ⟩ ∣b⟩ = L_1∣a⟩ ∣b⟩=L1∣a⟩
带入上述方程就有
⟨ λ 1 λ 2 ⋯ λ u ∣ L 1 = λ 1 ⟨ λ 1 λ 2 ⋯ λ u ∣ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣L_1 = \lambda_1⟨\lambda_1 \lambda_2 \cdots \lambda_u∣ ⟨λ1λ2⋯λu∣L1=λ1⟨λ1λ2⋯λu∣
因此,每一基左矢是 L 1 L_1 L1的一个本征左矢, λ 1 \lambda_1 λ1是其所属的本征值。从基左矢是正交的条件出发,我们能推导出 L 1 L_1 L1是实算符,而且是可观察量。令 λ 1 ′ , λ 2 ′ , ⋯ , λ u ′ \lambda'_1, \lambda'_2, \cdots, \lambda'_u λ1′,λ2′,⋯,λu′及 λ 1 ′ ′ , λ 2 ′ ′ , ⋯ , λ u ′ ′ \lambda''_1, \lambda''_2, \cdots, \lambda''_u λ1′′,λ2′′,⋯,λu′′是参量 λ 1 , λ 2 , ⋯ , λ u \lambda_1, \lambda_2, \cdots, \lambda_u λ1,λ2,⋯,λu的两组值。我们用各 λ ′ \lambda' λ′代入上式,并用各 λ ′ ′ \lambda'' λ′′右乘上式的两边,得
⟨ λ 1 ′ λ 2 ′ ⋯ λ u ′ ∣ L 1 ∣ λ 1 ′ ′ λ 2 ′ ′ ⋯ λ u ′ ′ ⟩ = λ 1 ′ ⟨ λ 1 ′ λ 2 ′ ⋯ λ u ′ ∣ λ 1 ′ ′ λ 2 ′ ′ ⋯ λ u ′ ′ ⟩ ⟨\lambda'_1 \lambda'_2 \cdots \lambda'_u∣L_1∣\lambda''_1 \lambda''_2 \cdots \lambda''_u⟩ = \lambda'_1⟨\lambda'_1 \lambda'_2 \cdots \lambda'_u∣\lambda''_1 \lambda''_2 \cdots \lambda''_u⟩ ⟨λ1′λ2′⋯λu′∣L1∣λ1′′λ2′′⋯λu′′⟩=λ1′⟨λ1′λ2′⋯λu′∣λ1′′λ2′′⋯λu′′⟩
反过来,我们也可以用各 λ ′ ′ \lambda'' λ′′代入上式,并用各 λ ′ \lambda' λ′右乘上式的两边,这样就得到
⟨ λ 1 ′ ′ λ 2 ′ ′ ⋯ λ u ′ ′ ∣ L 1 ∣ λ 1 ′ λ 2 ′ ⋯ λ u ′ ⟩ = λ 1 ′