量子力学之表象理论

本文探讨量子力学中的表象理论,特别是正交表象的建立和性质。通过基矢量的概念,阐述了如何从一组对易的可观察量构建正交表象,并证明了正交表象的基左矢是这些可观察量的共同本征左矢。同时,介绍了线性算符在表象中的表示形式,讨论了几率幅及其与测量概率的关系,强调了对易可观察量完全集的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量子力学之表象理论

基矢量

前面所有的这些符号,即线性算符、左矢量与右矢量都是抽象的量,为了数学上的进一步发展,把这些抽象的量用具有类似数学性质的数字集合来代替并表述是方便的。进行这个代替的方式不是唯一的,其中的每一个叫做一个表象。代替抽象量的数字集合叫做在此表象中这个抽象量的表示式

为了在普遍方式下建立表象,我们取左矢量的一个完全集,即这样一个集合,使任何左矢量都能表示为它们的线性组合。这些左矢我们称之为表象的基左矢。如果在一个表象中任何两个基左矢都是正交的,我们就称此表象为正交表象

我们假定基左矢由一个或多个参量 λ 1 , λ 2 , ⋯   , λ u \lambda_1, \lambda_2, \cdots, \lambda_u λ1,λ2,,λu所标记,且这些参量全都是实数。这样基左矢就可以写成 ⟨ λ 1 λ 2 ⋯ λ u ∣ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣ λ1λ2λu。下面我们来说明正交表象中的基左矢和对易可观察量的共同的本征左矢之间的关系。

取一右矢 ∣ a ⟩ ∣a⟩ a,其在上述基左矢下的表示式为 ⟨ λ 1 λ 2 ⋯ λ u ∣ a ⟩ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣a⟩ λ1λ2λua,现在令 ∣ b ⟩ ∣b⟩ b为满足下式的右矢
⟨ λ 1 λ 2 ⋯ λ u ∣ b ⟩ = λ 1 ⟨ λ 1 λ 2 ⋯ λ u ∣ a ⟩ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣b⟩ = \lambda_1⟨\lambda_1 \lambda_2 \cdots \lambda_u∣a⟩ λ1λ2λub=λ1λ1λ2λua
因为它们的表示式直接这样的线性关系,我们可以假定存在一线性算符 L 1 L_1 L1使得
∣ b ⟩ = L 1 ∣ a ⟩ ∣b⟩ = L_1∣a⟩ b=L1a
带入上述方程就有
⟨ λ 1 λ 2 ⋯ λ u ∣ L 1 = λ 1 ⟨ λ 1 λ 2 ⋯ λ u ∣ ⟨\lambda_1 \lambda_2 \cdots \lambda_u∣L_1 = \lambda_1⟨\lambda_1 \lambda_2 \cdots \lambda_u∣ λ1λ2λuL1=λ1λ1λ2λu
因此,每一基左矢是 L 1 L_1 L1的一个本征左矢, λ 1 \lambda_1 λ1是其所属的本征值。从基左矢是正交的条件出发,我们能推导出 L 1 L_1 L1是实算符,而且是可观察量。令 λ 1 ′ , λ 2 ′ , ⋯   , λ u ′ \lambda'_1, \lambda'_2, \cdots, \lambda'_u λ1,λ2,,λu λ 1 ′ ′ , λ 2 ′ ′ , ⋯   , λ u ′ ′ \lambda''_1, \lambda''_2, \cdots, \lambda''_u λ1,λ2,,λu是参量 λ 1 , λ 2 , ⋯   , λ u \lambda_1, \lambda_2, \cdots, \lambda_u λ1,λ2,,λu的两组值。我们用各 λ ′ \lambda' λ代入上式,并用各 λ ′ ′ \lambda'' λ右乘上式的两边,得
⟨ λ 1 ′ λ 2 ′ ⋯ λ u ′ ∣ L 1 ∣ λ 1 ′ ′ λ 2 ′ ′ ⋯ λ u ′ ′ ⟩ = λ 1 ′ ⟨ λ 1 ′ λ 2 ′ ⋯ λ u ′ ∣ λ 1 ′ ′ λ 2 ′ ′ ⋯ λ u ′ ′ ⟩ ⟨\lambda'_1 \lambda'_2 \cdots \lambda'_u∣L_1∣\lambda''_1 \lambda''_2 \cdots \lambda''_u⟩ = \lambda'_1⟨\lambda'_1 \lambda'_2 \cdots \lambda'_u∣\lambda''_1 \lambda''_2 \cdots \lambda''_u⟩ λ1λ2λuL1λ1λ2λu=λ1λ1λ2λuλ1λ2λu
反过来,我们也可以用各 λ ′ ′ \lambda'' λ代入上式,并用各 λ ′ \lambda' λ右乘上式的两边,这样就得到
⟨ λ 1 ′ ′ λ 2 ′ ′ ⋯ λ u ′ ′ ∣ L 1 ∣ λ 1 ′ λ 2 ′ ⋯ λ u ′ ⟩ = λ 1 ′

<think>好的,用户的问题是关于量子力学中的表象概念,需要详细解释。首先,我需要明确表象量子力学中的定义和作用。表象指的是描述量子态和算符的不同数学框架,比如位置表象、动量表象和能量表象等。不同的表象对应不同的基矢选择,方便解决不同问题。 接下来,用户可能需要了解不同表象之间的转换方法,特别是幺正变换的作用。这里需要解释幺正算符如何保持内积不变,从而保证物理量在不同表象下的等效性。同时,傅里叶变换作为位置表象和动量表象转换的工具,应该详细说明。 然后,狄拉克符号在抽象表述中的应用也很重要。要区分右矢和左矢的概念,以及它们如何在不同基底展开。这部分需要结合具体例子,比如波函数在位置表象中的表示形式ψ(x)=⟨x|ψ⟩。 另外,可能还需要提到薛定谔方程在不同表象下的形式差异,比如位置表象中的偏微分方程和能量表象中的矩阵方程,说明表象选择对问题简化的影响。 用户的问题中还可能隐含着对表象变换实际应用的兴趣,比如在解决具体物理问题时如何选择最合适的表象。例如,处理束缚态问题常用能量表象,而散射问题可能更适合动量表象。 最后,确保回答结构清晰,分点阐述,避免使用步骤词汇,并正确应用数学公式和代码格式(如果有的话)。检查是否在最后添加了相关问题,确保符合格式要求,问题相关且有意义。</think>量子力学中的表象(Representation)是指描述量子态和物理量的不同数学框架。通过选择特定基底展开波函数和算符,可形成不同观察视角的等效描述方式。以下是核心要点解析: **希尔伯特空间基底选择** 量子态用希尔伯特空间中的矢量表示,基底选择决定具体数学形式。位置表象以位置算符$\hat{X}$的本征态为基底,动量表象以动量算符$\hat{P}$的本征态为基底,能量表象则采用哈密顿算符$\hat{H}$的本征态。 **波函数与算符表示** 位置表象中波函数写作$\psi(x)=\langle x|\psi\rangle$,动量表象中为$\phi(p)=\langle p|\psi\rangle$。算符在位置表象表示为微分算符: $$\hat{X}\to x,\quad \hat{P}\to -i\hbar\frac{\partial}{\partial x}$$ 在动量表象中则表示为: $$\hat{P}\to p,\quad \hat{X}\to i\hbar\frac{\partial}{\partial p}$$ **表象变换原理** 不同表象通过幺正变换相互联系。位置表象与动量表象的转换由傅里叶变换实现: $$\phi(p)=\frac{1}{\sqrt{2\pi\hbar}}\int_{-\infty}^\infty e^{-ipx/\hbar}\psi(x)dx$$ 幺正矩阵$U$满足$U^\dagger U=I$,保证概率守恒。 **狄拉克符号抽象表述** 使用狄拉克符号时,右矢$|\psi\rangle$可投影到任意基底: $$|\psi\rangle=\int dx|x\rangle\langle x|\psi\rangle=\int dp|p\rangle\langle p|\psi\rangle$$ 左矢$\langle \phi|$作为对偶空间元素,满足$\langle \phi|\psi\rangle$为内积。 **物理等效性原理** 所有表象对物理测量结果的预测完全一致。期望值计算不依赖具体表象: $$\langle \hat{A}\rangle=\langle\psi|\hat{A}|\psi\rangle=\int dx\psi^*(x)\hat{A}\psi(x)$$ ```python # 位置表象到动量表象的傅里叶变换示例 import numpy as np def position_to_momentum(psi_x, x, hbar=1): dx = x[1] - x[0] p = np.fft.fftshift(np.fft.fftfreq(len(x), dx)) * 2*np.pi*hbar phi_p = np.fft.fftshift(np.fft.fft(psi_x)) * dx / np.sqrt(2*np.pi*hbar) return p, phi_p ``` 表象选择依据具体物理问题而定:束缚态问题常用能量表象,散射问题多用动量表象,而量子测量理论常在位置表象中讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值