爱因斯坦场方程之Schwarzschild真空解

李导数和Killing矢量场

推拉映射

ϕ \phi ϕ是流形间的光滑映射,其拉回映射 ϕ ∗ \phi^* ϕ定义为
( ϕ ∗ f ) ∣ p = f ∣ ϕ ( p ) (\phi^*f)|_p = f|_{\phi(p)} (ϕf)p=fϕ(p)
其推前映射 ϕ ∗ \phi_* ϕ定义为
( ϕ ∗ v ) ∣ ϕ ( p ) ( f ) = v ∣ p ( ϕ ∗ f ) (\phi_*v)|_{\phi(p)}(f) = v|_p(\phi^*f) (ϕv)ϕ(p)(f)=vp(ϕf)
拉回映射的定义可以推广到 ( 0 , l ) (0, l) (0,l)型张量场,只需定义
( ϕ ∗ T ) a 1 ⋯ a l ∣ p ( v 1 ) a 1 ⋯ ( v l ) a l = T a 1 ⋯ a l ∣ ϕ ( p ) ( ϕ ∗ v 1 ) a 1 ⋯ ( ϕ ∗ v l ) a l (\phi^*T)_{a_1\cdots a_l}|_p(v_1)^{a_1}\cdots(v_l)^{a_l} = T_{a_1\cdots a_l}|_{\phi(p)}(\phi_*v_1)^{a_1}\cdots(\phi_*v_l)^{a_l} (ϕT)a1alp(v1)a1(vl)al=Ta1alϕ(p)(ϕv1)a1(ϕvl)al
类似地,推前映射的推广为
( ϕ ∗ T ) a 1 ⋯ a k ∣ ϕ ( p ) ( ω 1 ) a 1 ⋯ ( ω k ) a k = T a 1 ⋯ a k ∣ p ( ϕ ∗ ω 1 ) a 1 ⋯ ( ϕ ∗ ω k ) a k (\phi_*T)^{a_1\cdots a_k}|_{\phi(p)}(\omega^1)_{a_1}\cdots(\omega^k)_{a_k} = T^{a_1\cdots a_k}|_p(\phi^*\omega^1)_{a_1}\cdots(\phi^*\omega^k)_{a_k} (ϕT)a1akϕ(p)(ω1)a1(ωk)ak=Ta1akp(ϕω1)a1(ϕωk)ak
进一步的推广给出
( ϕ ∗ T ) a 1 ⋯ a k b 1 ⋯ b l ∣ ϕ ( p ) ( ω 1 ) a 1 ⋯ ( ω k ) a k ( v 1 ) b 1 ⋯ ( v l ) b l = T a 1 ⋯ a k b 1 ⋯ b l ∣ p ( ϕ ∗ ω 1 ) a 1 ⋯ ( ϕ ∗ ω k ) a k ( ϕ ∗ − 1 v ) b 1 ⋯ ( ϕ ∗ − 1 v ) b l (\phi_*T)^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_{\phi(p)}(\omega^1)_{a_1}\cdots(\omega^k)_{a_k}(v_1)^{b_1}\cdots(v_l)^{b_l} = T^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_p(\phi^*\omega^1)_{a_1}\cdots(\phi^*\omega^k)_{a_k}(\phi_*^{-1}v)^{b_1}\cdots(\phi_*^{-1}v)^{b_l} (ϕT)a1akb1blϕ(p)(ω1)a1(ωk)ak(v1)b1(vl)bl=Ta1akb1blp(ϕω1)a1(ϕωk)ak(ϕ1v)b1(ϕ1v)bl

( ϕ ∗ T ) a 1 ⋯ a k b 1 ⋯ b l ∣ p ( ω 1 ) a 1 ⋯ ( ω k ) a k ( v 1 ) b 1 ⋯ ( v l ) b l = T a 1 ⋯ a k b 1 ⋯ b l ∣ ϕ ( p ) ( ϕ − 1 ∗ ω 1 ) a 1 ⋯ ( ϕ − 1 ∗ ω k ) a k ( ϕ ∗ v ) b 1 ⋯ ( ϕ ∗ v ) b l (\phi^*T)^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_p(\omega^1)_{a_1}\cdots(\omega^k)_{a_k}(v_1)^{b_1}\cdots(v_l)^{b_l} = T^{a_1\cdots a_k}{}_{b_1\cdots b_l}|_{\phi(p)}(\phi^{-1*}\omega^1)_{a_1}\cdots(\phi^{-1*}\omega^k)_{a_k}(\phi_*v)^{b_1}\cdots(\phi_*v)^{b_l} (ϕT)a1akb1blp(ω1)a1(ωk)ak(v1)b1(vl)bl=Ta1akb1blϕ(p)(ϕ1ω1)a1(ϕ1ωk)ak(ϕv)b1(ϕv)bl

李导数

我们知道光滑矢量场对应单参微分同胚群,也就是说我们考虑该矢量场的积分曲线,然后定义 ϕ t ( p ) \phi_t(p) ϕt(p)为位于过 p p p点的积分曲线上,与 p p p点的参数值差 t t t的点。对于映射 ϕ t \phi_t ϕt,我们可以考虑其拉回 ϕ t ∗ \phi^*_t ϕt,李导数在此基础上定义为
L v T a 1 ⋯ a k b 1 ⋯ b l = lim ⁡ t → 0 1 t ( ϕ t ∗ T a 1 ⋯ a k b 1 ⋯ b l − T a 1 ⋯ a k b 1 ⋯ b l ) \mathscr L_vT^{a_1\cdots a_k}{}_{b_1\cdots b_l} = \lim_{t\to 0}\frac{1}{t}(\phi^*_tT^{a_1\cdots a_k}{}_{b_1\cdots b_l} - T^{a_1\cdots a_k}{}_{b_1\cdots b_l}) LvTa1akb1bl=t0limt1(ϕtTa1akb1blTa1akb1bl)

以积分曲线为 x 1 x^1 x1坐标线的坐标系叫做矢量场的适配坐标系。可以证明,李导数就是对适配坐标系的 x 1 x^1 x1坐标的导数。由此又可以证明 [ v , u ] μ = ( d x μ ) a ( v b ∂ b u a − u b ∂ b v a ) = v b ∂ b u μ = v ( u μ ) = ∂ u μ ∂ x 1 = ( L v u ) μ [v, u]^\mu = (dx^\mu)_a(v^b\partial_bu^a - u^b\partial_bv^a) = v^b\partial_bu^\mu = v(u^\mu) = \frac{\partial u^\mu}{\partial x^1} = (\mathscr L_vu)^\mu [v,u]μ=(dxμ)a(vb

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值