系统梳理EEG中常用的功能连接指标—系列2(终)

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》

在上一篇文章《系统梳理EEG中常用的功能连接指标—系列1》中,笔者对皮尔森相关系数(Pearson correlation coefficient)、波谱相干(Spectral coherence)、互信息(Mutual information,MI)、相锁值(Phase Locking Value, PLV)4个功能连接指标的计算方法、优缺点进行了介绍。本文为系列2,继续对相关的功能连接指标进行梳理。

5.相滞指数(Phase lag index,PLI)
与PLV相似,PLI也是基于相位的功能连接方法,可以用来测量两个通道信号的相同步程度,其计算方法如下:
在这里插入图片描述其中,N表示时间点,φrel表示两个通道信号在时间tn处的相位差,sign是一个符号函数,当自变量为正值时其输出为1,当自变量为负值时其结果为-1,对于0其结果也是0.
PLI的取值范围为[0 1],值越大表示两个信号之间的相位同步程度越强。PLI最主要的优点是对体积传导效应(volume conduction effect)不敏感,但是其对噪声似乎比较敏感。

6.部分有向相干(Partial directed coherence, PDC)
PDC是一种基于格兰杰因果关系的多变量有效连接测量方法,与前面介绍的其他功能连接方法不同,PDC是测量通道信号之间的因果影响,因此是有方向性的。对于一个N通道的EEG信号X(n)=[x1(n),x2(n), x3(n), …, xN(n)]T,其可以用一个多变量的自回归模型MVAR来描述:
在这里插入图片描述
其中p是MVAR的order,Ar表示系数矩阵,W(n)表示高斯白噪声。
p可以通过Akaike information criterion (AIC)来求解,而通过Yule-Walker方程,可以把Ar求解出来。当求得Ar之后,那么就可以得到A(f):
在这里插入图片描述
其中I表示identity matrix。
那么,频率f处从通道j到通道i的有向信息流即PDC值可以用以下公式来求解:
在这里插入图片描述
其中Aij(f)表示A(f)矩阵的元素,*表示矩阵转置和复共轭。
PDC值的范围[0 1],值越大表示从通道j到i的信息流动越强

7.有向传递函数(Direct Transfer Function, DTF)
与PDC类似,DTF也是一种基于格兰杰因果关系的多变量有效连接测量方法,DTF的计算过程也与PDC类似,唯一区别在于DTF的计算用到了上述A(f)的逆矩阵,我们这里记为H(f),那么DTF定义为:
在这里插入图片描述
同样,DTF取值范围在[0 1]。与PDC相比,DTF主要问题可能是会检测到通道之间的间接因果连接,因此会产生虚假连接,而PDC只检测通道之间的直接连接。

8.其他功能连接指标
除了在《系列1》和本文上述介绍的这些功能连接指标,还有很多其他的功能连接的指标,如同步似然指数(Synchronization Likelihood, SL)、转移熵(Transfer Entropy, TE)、部分转移熵(Partial Transfer Entropy, PTE)、相位斜率指数(Phase Slope Index, PSI)、加权PLI(Weighted Phase-Lag Index, WPLI)、部分MI(Partial Mutual Information, PMI)等。而有些功能连接指标的计算原理笔者也并不是十分了解,在这里就不展开介绍,以免误人子弟。如果想对各种各样的功能连接指标有一个系统的了解,笔者推荐HERMES工具包。HERMES是由西班牙马德里技术大学(Technical University of Madrid)的Centre for Biomedical Technology团队研发的基于Matlab的开源EEG工具包,其主要的功能和特点是计算基于各种方法的功能连接,HERMES官方网址:http://hermes.ctb.upm.es/

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读