系统梳理EEG中常用的功能连接指标—系列2(终)

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》

在上一篇文章《系统梳理EEG中常用的功能连接指标—系列1》中,笔者对皮尔森相关系数(Pearson correlation coefficient)、波谱相干(Spectral coherence)、互信息(Mutual information,MI)、相锁值(Phase Locking Value, PLV)4个功能连接指标的计算方法、优缺点进行了介绍。本文为系列2,继续对相关的功能连接指标进行梳理。

5.相滞指数(Phase lag index,PLI)
与PLV相似,PLI也是基于相位的功能连接方法,可以用来测量两个通道信号的相同步程度,其计算方法如下:
在这里插入图片描述其中,N表示时间点,φrel表示两个通道信号在时间tn处的相位差,sign是一个符号函数,当自变量为正值时其输出为1,当自变量为负值时其结果为-1,对于0其结果也是0.
PLI的取值范围为[0 1],值越大表示两个信号之间的相位同步程度越强。PLI最主要的优点是对体积传导效应(volume conduction effect)不敏感,但是其对噪声似乎比较敏感。

6.部分有向相干(Partial directed coherence, PDC)
PDC是一种基于格兰杰因果关系的多变量有效连接测量方法,与前面介绍的其他功能连接方法不同,PDC是测量通道信号之间的因果影响,因此是有方向性的。对于一个N通道的EEG信号X(n)=[x1(n),x2(n), x3(n), …, xN(n)]T,其可以用一个多变量的自回归模型MVAR来描述:
在这里插入图片描述
其中p是MVAR的order,Ar表示系数矩阵,W(n)表示高斯白噪声。
p可以通过Akaike information criterion (AIC)来求解,而通过Yule-Walker方程,可以把Ar求解出来。当求得Ar之后,那么就可以得到A(f):
在这里插入图片描述
其中I表示identity matrix。
那么,频率f处从通道j到通道i的有向信息流即PDC值可以用以下公式来求解:
在这里插入图片描述
其中Aij(f)表示A(f)矩阵的元素,*表示矩阵转置和复共轭。
PDC值的范围[0 1],值越大表示从通道j到i的信息流动越强

7.有向传递函数(Direct Transfer Function, DTF)
与PDC类似,DTF也是一种基于格兰杰因果关系的多变量有效连接测量方法,DTF的计算过程也与PDC类似,唯一区别在于DTF的计算用到了上述A(f)的逆矩阵,我们这里记为H(f),那么DTF定义为:
在这里插入图片描述
同样,DTF取值范围在[0 1]。与PDC相比,DTF主要问题可能是会检测到通道之间的间接因果连接,因此会产生虚假连接,而PDC只检测通道之间的直接连接。

8.其他功能连接指标
除了在《系列1》和本文上述介绍的这些功能连接指标,还有很多其他的功能连接的指标,如同步似然指数(Synchronization Likelihood, SL)、转移熵(Transfer Entropy, TE)、部分转移熵(Partial Transfer Entropy, PTE)、相位斜率指数(Phase Slope Index, PSI)、加权PLI(Weighted Phase-Lag Index, WPLI)、部分MI(Partial Mutual Information, PMI)等。而有些功能连接指标的计算原理笔者也并不是十分了解,在这里就不展开介绍,以免误人子弟。如果想对各种各样的功能连接指标有一个系统的了解,笔者推荐HERMES工具包。HERMES是由西班牙马德里技术大学(Technical University of Madrid)的Centre for Biomedical Technology团队研发的基于Matlab的开源EEG工具包,其主要的功能和特点是计算基于各种方法的功能连接,HERMES官方网址:http://hermes.ctb.upm.es/

### 实现EEG功能连接分析的方法 在MATLAB中实现EEG功能连接分析涉及几个关键步骤,包括数据预处理、选择合适的连通性度量以及可视化结果。具体过程如下: #### 数据准备与导入 研究人员需要提供三个路径来配置环境:`data_location` 路径应指向存储.mat文件的目录,这些文件包含了待分析的数据;`save_location` 则定义了整理后数据的目标位置;另外还需指定加载 EEGLAB 的路径[^2]。 #### 功能连接度量的选择 针对不同类型的实验设计(如静息态或事件相关),可以选择多种功能连接指标来进行评估。例如,互相关谱功率 (ICPS) 和加权相位滞后指数 (wPLI) 是两种常用的时间-频率域内的相位同步性测度。前者衡量的是两个信号间的瞬时相位差的一致程度,后者则进一步考虑到了相位延迟的影响,有助于减少因体积传导造成的伪影影响[^4]。 #### 参数设置 当决定采用上述任一方法时,还需要设定若干参数选项。这包括但不限于是否应用基线校正 (`TF_bln`) 来标准化各频带的能量水平,以及是否要对最得到的功能连接矩阵实施下采样操作以降低维度并加快后续处理速度。 #### 编写脚本进行计算 编写一段自定义的 MATLAB 代码片段可以帮助完成整个流程自动化。下面给出一个简化版的例子,展示了如何调用 EEGLAB 函数库中的 `newtimef()` 对 EEG 记录执行时频变换,并随后运用 `ft_connectivityanalysis()` 来获取 ICPS 或 wPLI 值。 ```matlab % 加载必要的工具箱和插件 eeglab; % 导入已预处理好的 EEG 数据集 load('preprocessed_data.mat'); % 定义所需变量 cfg = []; cfg.method = 'mtmconvol'; % 多锥形窗傅里叶变换 cfg.output = 'pow'; cfg.taper = 'hanning'; % 执行时频分解 freqData = newtimef(epochs, cfg); % 配置连接性分析参数 conn_cfg = []; conn_cfg.method = {'icps', 'wpli'}; conn_cfg.channelcmb = {'all','all'}; % 获取连接性估计值 connectivityResults = ft_connectivityanalysis(conn_cfg, freqData); ``` 此段程序仅作为概念验证用途,在实际项目中应当依据具体情况调整各项配置项及其取值范围。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值