矩阵A的转置乘A是否一定正定?矩阵A的转置乘A是正定矩阵的充分必要条件

先上结论:

若矩阵 A ∈ R m × n A\in \mathbb{R}^{m\times n} ARm×n(可以不要求 A A A是方阵),则对于任意非零向量 x ∈ R n x\in \mathbb{R}^{n} xRn,始终有 x T A T A ≥ 0. x^{\mathsf{T}}A^{\mathsf{T}}A\ge0. xTATA0. 另外 A T A A^{\mathsf{T}}A ATA一定是对称的。因此 A T A A^{\mathsf{T}}A ATA不一定是正定矩阵,但一定是半正定矩阵。

如果 m = n m=n m=n A T A A^{\mathsf{T}}A ATA 是正定的当且仅当 A T A A^{\mathsf{T}}A ATA是可逆矩阵(满秩)。

m < n m<n m<n A T A A^{\mathsf{T}}A ATA一定是半正定的。

m > n m>n m>n A T A A^{\mathsf{T}}A ATA可能正定,可能半正定。

结论2:

A T A A^{\mathsf{T}}A ATA是正定矩阵的充分必要条件是 A A A满足列满秩, rank ( A ) = n \text{rank}(A)=n rank(A)=n

结论3:

结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如: [ 1 0 ] ∗ [ 0 1 ] T = 0. [1\quad 0] ∗ [0 \quad 1] ^{\mathsf{T}} = 0. [10][01]T=0.

结论4:

结论4:如果 B ) − 1 \boldsymbol{B})^{-1} B)1是半正定,给定任意 δ > 0 , ( δ I + B ) − 1 \delta>0, (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} δ>0(δI+B)1一定存在,且是正定的, 因为 δ I + B \delta\boldsymbol{I}+\boldsymbol{B} δI+B是正定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值