先上结论:
若矩阵 A ∈ R m × n A\in \mathbb{R}^{m\times n} A∈Rm×n(可以不要求 A A A是方阵),则对于任意非零向量 x ∈ R n x\in \mathbb{R}^{n} x∈Rn,始终有 x T A T A ≥ 0. x^{\mathsf{T}}A^{\mathsf{T}}A\ge0. xTATA≥0. 另外 A T A A^{\mathsf{T}}A ATA一定是对称的。因此 A T A A^{\mathsf{T}}A ATA不一定是正定矩阵,但一定是半正定矩阵。
如果 m = n m=n m=n , A T A A^{\mathsf{T}}A ATA 是正定的当且仅当 A T A A^{\mathsf{T}}A ATA是可逆矩阵(满秩)。
当 m < n m<n m<n , A T A A^{\mathsf{T}}A ATA一定是半正定的。
当 m > n m>n m>n, A T A A^{\mathsf{T}}A ATA可能正定,可能半正定。
结论2:
A T A A^{\mathsf{T}}A ATA是正定矩阵的充分必要条件是 A A A满足列满秩, rank ( A ) = n \text{rank}(A)=n rank(A)=n。
结论3:
结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如: [ 1 0 ] ∗ [ 0 1 ] T = 0. [1\quad 0] ∗ [0 \quad 1] ^{\mathsf{T}} = 0. [10]∗[01]T=0.
结论4:
结论4:如果 B ) − 1 \boldsymbol{B})^{-1} B)−1是半正定,给定任意 δ > 0 , ( δ I + B ) − 1 \delta>0, (\delta\boldsymbol{I}+\boldsymbol{B})^{-1} δ>0,(δI+B)−1一定存在,且是正定的, 因为 δ I + B \delta\boldsymbol{I}+\boldsymbol{B} δI+B是正定的。