线性代数基础

一、线性方程组

1.1 线性方程组

  • 线性方程:
  • 线性方程组:
  • 一组解、解集:
  • 例子:求包含两个未知数的两个方程组成的方程组的解,等价于求两条直线的交点:一个数对(a,b)同时满足两个方程,代表这个点同时在两个方程表示的直线上,故而为两直线的交点。同理三个未知数的方程代表面,满足方程组的解集为不同面的交集。
线性方程组的解情况
线性方程组是相容的:一个或无穷个解
不相容:无解
  • 解法:两个线性方程组的增广矩阵是行等价的,则它们具有相同的解集

1.2 行化简和阶梯型矩阵

  • 先导元素、阶梯型矩阵(3点)和简化阶梯型矩阵(5点):一行中最左边不为0的元素
  • 解的存在性问题

定理1 :每个矩阵等价于唯一的简化阶梯型矩阵

  • 主元位置和主元列:矩阵A对应的阶梯型矩阵先导元素的位置;主元列是A的含有主元位置的列
  • 行化简方法:
  • 基本变量、自由变量:化简后的增广矩阵对应一个线性方程组,对应于主元列的变量为基本变量,其他变量为自由变量
    线性方程组相容,解可以用基本变量和自由变量表示出来,自由变量可以取任意的值

定理2(存在与唯一性定理):线性方程组相容(有解)的充要条件是增广矩阵的最右列不是主元列。就是说增广矩阵的阶梯型没有形状如 [0 0 0 0 b] 的行。(b≠0)
唯一性:没有自由变量时,有唯一解,有自由变量时,有无穷个解。

1.3 向量方程

  • 向量和向量的代数性质

  • 向量的线性组合:
    在这里插入图片描述

  • 若v1,v2,…,vp 是Rn中的向量,则v1,v2,…,vp 所有的线性组合组成的集合用 Span{v1,v2,…,vp}表示,称v1,v2,…,vp 生成(或张成)Rn的子集。就是说Span{v1,v2,…,vp}是所有形如 c1v1 + c2v2 + … +cpvp 的向量的集合

  • 要判断向量 b 是否在Span{v1,v2,…,vp} 中,等价判断 向量方程是否有解,等价判断增广矩阵是否有解

  • Span{v} 和Span{u v}的几何解释:在R2中和R3中,注意都是过原点的

1.4 矩阵方程Ax = b

在这里插入图片描述
在这里插入图片描述

  • 方程 Ax = b 有解 放且仅当 b 是 A 各列的线性组合

定理4:设A是 m×n 的矩阵,下列表述等价(注意,讨论的是系数矩阵A),这是讨论对任意b 都可以写成A的各列线性组合
a、对Rm中的每个b,方程 Ax = b 有解
b、Rm 中的每个b 都是A的列的一个线性组合
c、A 的各列生成Rm(Rm中的每一个 向量b都是A的列的线性组合)
d、A 在每一行都有一个主元位置,即增广矩阵的阶梯型没有如 [ 0 0 0 1] 的行

1.5 线性方程的解集

  • 齐次线性方程组:形如 Ax = 0,A 是m×n 矩阵,0是Rm中的零向量

齐次方程至少有一个解,即x = 0,称为平凡解
非平凡解(非零向量x):当且仅当方程组至少有一个自由变量
在这里插入图片描述

  • 参数向量形式:
  • 非齐次方程组的解:

定理6:设方程 A x = b 对某个b是相容的,p为一个特解,则方程的解集是 p+ v,其中v是Ax=0的任意一个解。
在这里插入图片描述

1.6 应用

1.7 线性无关

  • 线性无关
    在这里插入图片描述
  • 矩阵各列线性无关:将上述向量方程写成矩阵形式,矩阵的各列线性无关,当且仅当方程 Ax = 0 仅有平凡解
  • 两个向量的集合判断线性相关:是否成倍数关系
  • 多个向量的集合:当且至少有一个向量是其他的线性组合,则这个集合是线性相关的
  • 若一个向量组的向量的个数超过了向量中元素的个数,则这个向量组是线性相关的。
  • 若向量组中包含零向量,则他们线性相关
  • 在这里插入图片描述

二 、矩阵代数

2.1 矩阵运算(√)

  • 矩阵的和 、标量乘法
  • 矩阵的乘法
  • 矩阵的乘幂
  • 矩阵的转置:若干个矩阵的乘积的转置 等于 转置的乘积,但是顺序相反

2.2 矩阵的逆

在这里插入图片描述

定理4 :矩阵可逆,当且仅当行列式 不为 0
定理5:若A是n x n可逆矩阵,则对于Rn中任意b,方程Ax = b 有唯一解 ,x = A(-1)b
定理6:乘积的逆 等于 相反顺序 逆的乘积

  • 通过行变换求逆
    在这里插入图片描述

2.4 分块矩阵

2.5 矩阵的因式分解

2.8 Rn的子空间

Rn的一个子空间是 Rn中的集合 H, 它具有以下三个性质:1、零向量属于H 。2、对H中的任意两个向量 u和v,u+v属于H 。3、对H中的任意向量u,数乘 cu属于H
即子空间对于加法和标量乘法是封闭的

  • 例子:通过原点的平面;通过原点的直线;不过原点的不是子空间
  • 在这里插入图片描述
  • 矩阵的列空间:矩阵A的各列的线性组合 的 集合,记作Col A

A 的列空间是所有使方程 Ax = b 有解的 向量b的集合

  • 矩阵的零空间:是齐次方程 Ax = 0 的所有解的集合,记作 Nul A

2.9 维数与秩

  • 坐标系:在这里插入图片描述- 子空间的维数:非零子空间H的维数,用dim H表示,是H的任意一个基 的向量的 个数,零子空间的维数定义为零;
  • 例子:Rn空间的维数是 n,Rn的每个基由 n个向量组成;R3中的一个经过原点的平面维数是2,一条经过原点的直线维数是1。

Nul A 的维数,是求出 Ax = 0中自由变量的个数
矩阵A的秩(rank A)定义为 A列空间的维数;A的主元列形成Col A的一个基,A的秩正好是A 的主元列的个数
定理14(秩定理):结合上面两条,若矩阵A由n列,则rank A + dim (Nul A)= n;
定理15(基定理)在这里插入图片描述
在这里插入图片描述

三、行列式

3.1 行列式介绍

  • 行列式的计算法则

定理2:若A为三角矩阵,则det A等于A的对角线上元素乘积

3.2 行列式性质

dingl在这里插入图片描述
定理4:方阵A是可逆的,当且仅当 detA 不为0
定理在这里插入图片描述
定理5:在这里插入图片描述在这里插入图片描述

3.3 克拉默法则、体积和线性变换

四、向量空间

4.1 向量空间 与 子空间

在这里插入图片描述
在这里插入图片描述
每个子空间都是一个向量空间,典型的为 R3空间中的一个过原点的平面,或者R3中一个过原点的直线;或者R2中一个过原点的直线;
在这里插入图片描述

4.2 零空间、列空间和线性变换

  • 矩阵的零空间
    在这里插入图片描述
    在这里插入图片描述

定理2:在这里插入图片描述

  • 矩阵的列空间
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

  • 线性变换的核 与 值域
    在这里插入图片描述

4.3 线性无关集和基

五、特征值与特征向量

5.1 特征向量与特征值

  • 定义:矩阵A 是n×n矩阵看,x为非零向量,若存在数 a 使得 Ax = ax, 则称a为A的特征值,x称为对应于 a 的特征向量。(被A变换成自身一个数量倍数的向量。
  • 特征值是 使方程(A-aI)x=0 有非平凡解的值,有自由变量的值,就是特征值。
  • 应该是 先求特征值,然后求特征值对应的特征向量,某个特种值对应的特种向量不唯一;是一个集合,称为矩阵A对应于特征值a的特征空间;
  • 矩阵A对特征空间具有扩张作用;是指给定某个特征值后,可以确定一个特种空间,矩阵A乘上这个特征空间里的任何向量,都等于这个向量乘特征值

定理1:三角矩阵的主对角线的元素是特征值
定理2:在这里插入图片描述

5.2 特征方程

  • 在这里插入图片描述
    在这里插入图片描述

六、正交性和最小二乘

6.1 内积、长度和正交性

  • 内积(点积):u 和 v 是 Rn 中 n×1 向量,内积u转置乘v,为一标量
  • 性质:交换 、数乘、分配
  • 向量的长度(范数):
  • 向量间距离:
  • 正交向量:两个向量的内积是0,则他们是正交的;几何上表示为u到v的距离和u到-v的距离相等;

定理2(勾股定理)在这里插入图片描述
在这里插入图片描述

6.2 正交集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 正交投影:
    在这里插入图片描述

  • 正交投影是定理5的特殊形式,将Rn中的向量分解为两个相互垂直的向量,这两个相互垂直的向量就是 一组正交基,即由两个向量组成的正交基;因为相互垂直就是正交集,正交集就是正交基
    在这里插入图片描述

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《机器学习线性代数基础》是一本介绍机器学习与线性代数基础知识的PDF,内容丰富且易于理解。 线性代数是机器学习中必不可少的基础知识之一。它提供了描述和处理向量、矩阵以及线性方程组的工具和方法。《机器学习线性代数基础》这本PDF详细介绍了线性代数的相关概念和方法,并结合机器学习的应用场景进行说明和实践。 PDF的内容主要包括以下几个方面: 1. 向量和矩阵的基本概念和运算:介绍了向量和矩阵的定义、加法、乘法等基本运算,以及线性相关性的判定等内容。 2. 矩阵的分解:介绍了特征值和特征向量、奇异值分解等矩阵的分解方法,以及它们在机器学习中的应用。 3. 线性变换和线性方程组:讲解了线性变换和线性方程组的相关概念和求解方法,以及它们在机器学习中的应用。 4. 向量空间和基底:介绍了向量空间的概念、基底和维数的定义,以及它们在机器学习中的应用。 5. 线性代数在机器学习中的应用:通过实际的机器学习案例,展示线性代数在特征选择、降维、回归分析等问题中的应用。 这本PDF适合初学者和对线性代数和机器学习感兴趣的人阅读。通过学习《机器学习线性代数基础》,可以帮助读者建立起对线性代数的基本理解和应用能力,并为进一步深入学习机器学习打下坚实的数学基础。总而言之,这本PDF是学习机器学习和线性代数的一本很好的参考资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值