增广矩阵and线性方程组----线性代数

齐次线性方程组:

( 1 ) 只 有 零 解 : ⇔ 系 数 行 列 式 D ≠ 0 克 莱 姆 法 则 : D ≠ 0 ⇒ 只 有 零 解 极 大 线 性 无 关 向 量 组 : n 个 n 维 向 量 相 关 ⇔ 矩 阵 的 行 列 式 = 0 ( 并 且 同 时 交 换 一 个 向 量 组 多 个 相 同 位 置 的 分 量 不 改 变 相 关 性 ) (1)只有零解:\Leftrightarrow系数行列式D\neq 0 \\ 克莱姆法则:D\neq 0 \Rightarrow只有零解 \\ 极大线性无关向量组:\\ n个n维向量相关 \Leftrightarrow 矩阵的行列式 =0 (并且同时交换一个向量组 多个相同位置的分量不改变相关性) (1)D=0D=0线nn=0
有 非 零 解 ⇔ R ( A ) < n , 基 础 解 系 的 个 数 为 n − R ( A ) 有非零解\Leftrightarrow R(A)<n,基础解系的个数为n-R(A) R(A)<n,nR(A)

非齐次线性方程组:

( 1 ) 有 解 : ⇔ R ( A ) = R ( A ˉ ( 增 广 矩 阵 ) ) 唯 一 解 ⇔ R ( A ) = R ( A ˉ ) = n 无 穷 多 解 R ( A ) = R ( A ˉ ) < n (1)有解:\Leftrightarrow R(A)=R( \bar A(增广矩阵)) \\ 唯一解 \Leftrightarrow R(A)=R( \bar A)=n \\ 无穷多解 R(A)=R( \bar A)<n (1)R(A)=R(Aˉ(广))R(A)=R(Aˉ)=nR(A)=R(Aˉ)<n

用增广矩阵解方程组:

化简:
( 1 0 a b ∣ e 0 1 c d ∣ f 0 0 0 0 ∣ 0 ) \left( \begin{array} { l l } { 1 } & { 0 } & { a } & { b } & { | } & { e } \\ {0 } & {1} & {c } & { d } & { | } & { f } \\ {0 } & {0} & { 0 } & { 0 } & { |} & { 0 } \end{array}\right) 100010ac0bd0ef0
则 : x 1 + a x 3 + b x 4 = e x 2 + c x 3 + d x 4 = f 则: \\ x_1+ax_3+bx_4=e\\ x_2+cx_3+dx_4=f\\ x1+ax3+bx4=ex2+cx3+dx4=f

则特解为
η = ( e f 0 0 ) 一 般 令 自 由 变 量 为 1 ξ 1 = ( a c 1 0 ) ξ 2 = ( b d 0 1 ) η=\left( \begin{array} { l l } { e } \\ { f } \\ { 0 } \\ { 0 } \end{array}\right)\\ 一般令自由变量为1\\ ξ_1=\left( \begin{array} { l l } { a } \\ { c } \\ { 1 } \\ { 0 } \end{array}\right)ξ_2=\left( \begin{array} { l l } { b } \\ { d } \\ { 0 } \\ { 1 } \end{array}\right) η=ef001ξ1=ac10ξ2=bd01
则原方程的解为:
x = η + k 1 ξ 1 + k 2 ξ 2 , ( k 1 , k 2 为 任 意 常 数 ) x= η+k_1 ξ_1+k_2ξ_2,(k_1,k_2为任意常数) x=η+k1ξ1+k2ξ2,(k1,k2)

在矩阵的初等变换求逆中也用到了“增广的形式”

( A ∣ E ) ⟶ 行 变 换 ( E ∣ A − 1 ) \left( \begin{array} { l l } { A } & { | } & { E} \end{array}\right) \stackrel{行变换}{\longrightarrow} \left( \begin{array} { l l } { E } & { | } & { A^{-1}} \end{array}\right) (AE)(EA1)
( A − E ) ⟶ 列 变 换 ( E − A − 1 ) \left( \begin{array} { l l } { A } \\ { - } \\ { E} \end{array}\right) \stackrel{列变换}{\longrightarrow}\left( \begin{array} { l l } { E } \\ { - } \\ { A^{-1}} \end{array}\right) AEEA1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值