机器学习中,发生过拟合的问题的两条处理方法

1、丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如PCA)

2、正则化。保留所有的特征,但是减少参数的大小(magnitude)。

为防止正则化程度太高或者太小,我们需要选择合适的λ,通常是0~10之间的呈现2倍关系的值(比如0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,2.56,5.12,10)。


选择λ的方法为:

1、使用训练集训练出12个不同程度正则化的模型

2、用12个模型分别对交叉验证集计算的出交叉验证误差

3、选择得出交叉验证误差最小的模型

4、运用步骤3中选择模型对测试集计算得出推广误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值