1、题目描述:
2、题解:
动态规划,DP table 这次是从右下角到左上角,因为如果是按照之前的思路,从左上角到右下角,那么当前位置的最小生命值和当前位置尚存的生命值对后续结果会产生很大影响。
状态定义:
dp[i][j]表示到达房间dungeon[i][j]所需的最小生命值。
状态转移方程:
dp[i][j]=max(min(dp[i+1][j],dp[i][j+1])−dungeon[i][j],1),正下方和右侧位置所需的最小生命值中的较小者。
base case:
1)初始化右下角dp[m−1][n−1],若dungeon[m−1][n−1]<0,则到达此房间的最小生命值为1−dungeon[m−1][n−1],否则为1,表示只要满足到达此房间的最低生命值1即可。
2)初始化最后一行,遍历区间[n−2,−1):
dp[−1][i]=max(1,dp[−1][i+1]−dungeon[−1][i]),若当前位置的dungeon[−1][i]小于等于后一位置所需的最小生命值
3)初始化最后一列:遍历[m-2,-1),dp[i][j]=max(1,dp[i+1][-1]−dungeon[i][-1])
Python代码如下:
class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
rol = len(dungeon)
col = len(dungeon[0])
dp = [[0] * col for _ in range(rol)]
#最右下角的元素初始化
dp[-1][-1] = max(1,1 - dungeon[-1][-1])
#初始化最后一行
for i in range(col-2,-1,-1):
dp[-1][i] = max(1,dp[-1][i+1] - dungeon[-1][i])
#初始化最后一列
for i in range(rol-2,-1,-1):
dp[i][-1] = max(1,dp[i + 1][-1] - dungeon[i][-1])
#核心
for i in range(rol-2,-1,-1):
for j in range(col - 2,-1,-1):
dp[i][j] = max(1,min(dp[i+1][j],dp[i][j+1]) - dungeon[i][j])
return dp[0][0]
或者代码优化如下:
class Solution:
def calculateMinimumHP(self, dungeon: List[List[int]]) -> int:
#动态规划
m,n = len(dungeon),len(dungeon[0])
dp = [[float('inf')] * (n + 1) for _ in range(m + 1)]
dp[m][n - 1] = dp[m - 1][n] = 1
for i in range(m - 1,-1,-1):
for j in range(n - 1,- 1,-1):
dp[i][j] = max(1,min(dp[i + 1][j],dp[i][j + 1]) - dungeon[i][j])
return dp[0][0]
C++代码如下:
class Solution {
public:
int calculateMinimumHP(vector<vector<int>>& dungeon) {
//动态规划
int m = dungeon.size(),n = dungeon[0].size();
vector<vector<int>> dp(m + 1,vector<int>(n + 1,INT_MAX));
dp[m][n - 1] = dp[m - 1][n] = 1;
for (int i = m - 1;i >= 0;i--)
for (int j = n - 1;j >= 0;j--)
dp[i][j] = max(1,min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j] );
return dp[0][0];
}
};
3、复杂度分析:
时间复杂度和空间复杂度都是O(NxN)