【OpenCV】对比度增强之直方图均衡化(全局)

直方图均衡化是一种灰度变换技术,用于提高图像对比度,使得图像灰度在0~255范围内均匀分布。它通过计算累积分布函数来找到映射关系,实现灰度级的重分布。OpenCV中的`equalizeHist()`函数可以便捷地完成这一过程。在C++中,可以按照计算直方图、归一化、积分和图像变换四个步骤来实现直方图均衡化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直方图均衡化属于数字图像处理中灰度变换(intensity transformation)的内容,灰度变换的目的就是找到一个合适的映射函数s=T ( r ) (r) (r).将原图像的灰度值映射到新的图像中,已达到优化图像的目的。
直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的目的。直方图均衡化的中心思想是把原始图像的的灰度直方图从比较集中的某个区域变成在全部灰度范围内的均匀分布。对比度较低的图像适合使用直方图均衡化方法来增强图像细节。
直方图均衡数学背景是将一个分布(强度值给定的直方图)映射到另一个分布(强度值更宽和理想的均匀分布)。也就是说,我们希望在新分配中尽可能均匀分布原始分布的y值。事实证明,解决扩展分布值的问题的一个好方法是:重映射函数应该是累积分布函数

公式的连续化
假设原图像的灰度统计直方图标准化后为 P r ( r ) P_r(r) Pr(r).原图像灰度范围为(0~L-1).那么直方图均衡化找到的就是这样一个映射函数:
S=(L-1) ∫ 0 r p r ( w ) d x \int^{r}_0p_{r}(w){\rm d}x 0rpr(w)dx
设映射后的图像的灰度分布为 p s ( s ) p_s(s) ps(s),再由概率论相关理论(随机变量函数的概率密度与随机变量概率密度的关系)可知:
p s ( s ) p_s(s) ps(s)= p r ( r ) p_r(r) pr(r)| d r d s \frac{ {\rm d}r}{ {\rm d}s} dsdr|
对映射函数两边进行求导
d s d r \frac{ {\rm d}s}{ {\rm d}r} drds=(L-1) p r ( r ) p_r(r) pr(r)
所以我们可以得到变换后的图像直方图分布为
p s ( s ) p_s(s) ps(s)= p r ( r ) p_r(r) pr(r)| 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值