6、Temporal-Difference Learning

 


        TD learning 是蒙特卡罗思想和动态规划(DP)思想的结合。与蒙特卡罗方法一样,TD方法可以直接从原始经验中学习,而不需要环境动态模型。与DP一样,TD方法也会部分地基于其他已学习的评估来更新评估,而不需要等待最终结果(引导性:如果值函数是根据其它的价值计算的,就是引导性的)。
 


1、TD Prediction

TD方法和蒙特卡罗方法都是利用经验来解决预测问题。

蒙特卡罗方法:必须等到本次episode结束才能确定 V ( S t ) V (S_t) V(St) 的增量
在这里插入图片描述
TD(0)方法:只需要等待到下一个时间步,在t+1时刻,立即形成一个目标,并使用观察到的奖励 R t + 1 R_{t+1} Rt+1 和估计 V ( S t + 1 ) V (S_{t+1}) V(St+1)进行更新。
在这里插入图片描述
由于TD方法的更新部分基于现有的估计,所以说它是一种引导方法,就像DP一样。
注意TD(0)更新公式的括号中的量是一种误差,它衡量的是 S t S_t St 的估计值与 R t + 1 + γ V ( S t + 1 ) R_{t+1}+ \gamma V(S_{t+1}) Rt+1+γV(St+1) 估计值之间的偏差。把这部分称为 TD error
在这里插入图片描述
同样,蒙特卡洛误差:
在这里插入图片描述

蒙特卡罗方法使用下面第一行等式的估计值作为目标,而DP方法以下面最后一行等式的估计值为目标。
在这里插入图片描述

算法:

在这里插入图片描述


TD Prediction Methods 的优点:

  1. 比DP方法好的第一个点是,不需要环境的模型,以及其奖励和下一个状态的概率分布。
  2. 是一种在线的、完全增量的方式实现。蒙特卡罗方法必须等到一个episode的结束才知道回报值,而TD方法只需要等待一个时间步长。
  3. 通常收敛速度比MC方法快。

 


2、Sarsa: On-Policy TD Control

        在当前策略 π \pi π 下,对每个状态 s 和动作 a 估计 q π ( s , a ) q_\pi(s,a) qπ(s,a) 。一个episode室友一组状态和状态动作对交替组合在一起的:
在这里插入图片描述
保证状态值在TD(0)下收敛的定理也适用于相应的动作值算法:
在这里插入图片描述
Sarsa 算法:

在这里插入图片描述
MorvanZhou的sarsa代码实现

 


3、Q-learning: Off-Policy TD Control

动作值函数的更新方式:
在这里插入图片描述

Q-learning 算法:

在这里插入图片描述
MorvanZhou的Q-learning代码实现

 


4、Expected Sarsa

        考虑与Q-learning类似的学习算法,不同之处在于它使用的不是下一个状态-动作对的最大值,而是期望值,并考虑到当前策略下每个动作发生的可能性。使用更新规则的算法如下:
在这里插入图片描述
 


5、Maximization Bias and Double Learning

        Q-learning和Sarsa都涉及目标策略构建的最大化。例如,在Q-learning中,目标策略是给定当前动作值的贪心策略,用max定义;在Sarsa中的策略通常是ε-greedy,也涉及到一个最大化操作。在这些算法中,最大值超过估计值被隐式地用作最大值的估计值,这会导致显著的正偏差。考虑一个状态s,其中有许多动作a,它们的真值q(s, a)都是零,但它们的估计值q(s, a)是不确定的,因此在零上和零下各有分布。真实值的最大值是零,但是估计值的最大值是正的,一个正的偏差。这个偏差称作 maximization bias。

Maximization Bias Example(下图):

  1. MDP有两个非终止态A和B,Episodes总是以A开始,在left和right两种动作之间做出选择。
  2. right 的动作立即转换到终止状态,并返回零。
  3. left的动作转移到B,也有一个零的奖励;从B开始有许多可能的动作,所有这些动作都导致立即终止,奖励服从从一个正态分布:均值 -0.1和方差1.0。
  4. 因此,从left开始的任何轨迹的期望回报都是-0.1,因此在状态A中选择left是一个错误的动作。
  5. 然而,我们的控制方法可能倾向于left,因为maximization bias使得B看起来有一个正的值。
  6. 使用Q-learning算法,可以发现最初强烈的倾向于left动作。

在这里插入图片描述

如何避免最大化偏差(Maximization Bias)问题?答案是使用 Double Q-learning。

更新公式:
在这里插入图片描述
Double Q-learning 算法:

在这里插入图片描述

 


6、Double Q-learning 算法代码实现

使用上面的 Q learning 算法中的代码,对其进行了修改:
1)maze环境

"""
Reinforcement learning maze example.

Red rectangle:          explorer.
Black rectangles:       hells       [reward = -1].
Yellow bin circle:      paradise    [reward = +1].
All other states:       ground      [reward = 0].

This script is the environment part of this example.
The RL is in RL_brain.py.

View more on my tutorial page: https://morvanzhou.github.io/tutorials/
"""
import numpy as np
import time
import sys
if sys.version_info.major == 2:
    import Tkinter as tk
else:
    import tkinter as tk


UNIT = 40   # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_H * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - 15, hell2_center[1] - 15,
            hell2_center[0] + 15, hell2_center[1] + 15,
            fill='black')

        # create oval
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.5)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return self.canvas.coords(self.rect)

    def step(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:   # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        s_ = self.canvas.coords(self.rect)  # next state

        # reward function
        if s_ == self.canvas.coords(self.oval):
            reward = 1
            done = True
            s_ = 'terminal'
        elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.hell2)]:
            reward = -1
            done = True
            s_ = 'terminal'
        else:
            reward = 0
            done = False

        return s_, reward, done

    def render(self):
        time.sleep(0.1)
        self.update()

2)Double Q-learning:

import numpy as np
import pandas as pd
from maze_env import Maze


class DoubleQLearningTable(object):
    def __init__(self, action_space, alpha=0.01, gamma=0.9, epsilon=0.9):
        self.actions = list(range(action_space))
        self.alpha = alpha
        self.gamma = gamma
        self.epsilon = epsilon

        self.Q1 = pd.DataFrame(columns=self.actions)
        self.Q2 = pd.DataFrame(columns=self.actions)

    def check_state_exist(self, s):
        if s not in self.Q1.index:
            self.Q1 = self.Q1.append(
                pd.Series([0]*len(self.actions),
                          index=self.Q1.columns,
                          name=s)
            )
        if s not in self.Q2.index:
            self.Q2 = self.Q2.append(
                pd.Series([0]*len(self.actions),
                          index=self.Q2.columns,
                          name=s)
            )

    def choose_action(self, s):
        # an ε-greedy policy for Double Q-learning could be based on the average (or sum)
        # of the two action-value estimates.
        self.check_state_exist(s)
        if np.random.rand() < self.epsilon:
            s_a = np.array(self.Q1.loc[s, :]) + np.array(self.Q2.loc[s, :])
            temp = np.argwhere(s_a.max() == s_a)
            action = np.random.choice(temp.flatten())
        else:
            action = np.random.choice(self.actions)
        return action

    def update(self, s, a, r, s_):
        self.check_state_exist(s_)
        if np.random.choice([0, 1]) == 0:
            if s_ != 'terminal':
                max_a = np.argmax(self.Q1.loc[s_, :])
                q_target = r + self.gamma * self.Q2.loc[s_, max_a]
            else:
                q_target = r
            self.Q1.loc[s, a] += self.alpha * (q_target - self.Q1.loc[s, a])
        else:
            if s_ != 'terminal':
                max_a = np.argmax(self.Q2.loc[s_, :])
                q_target = r + self.gamma * self.Q1.loc[s_, max_a]
            else:
                q_target = r
            self.Q2.loc[s, a] += self.alpha * (q_target - self.Q2.loc[s, a])


if __name__ == '__main__':
    env = Maze()
    action_space_ = env.n_actions
    RL = DoubleQLearningTable(action_space_)

    for episode in range(100):
        state = env.reset()
        while True:
            env.render()
            action = RL.choose_action(str(state))
            state_, reward, done = env.step(action)
            RL.update(str(state), action, reward, str(state_))

            state = state_
            if done:
                break

    print('game over')
    env.destroy()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值