TensorFlow 2——Keras 基础知识(回归regression问题)

预测汽车燃油效率的模型

在 回归 (regression) 问题中,我们的目的是预测出如价格或概率这样连续值的输出。

使用经典的 Auto MPG 数据集,构建了一个用来预测70年代末到80年代初汽车燃油效率的模型。为了做到这一点,我们将为该模型提供许多那个时期的汽车描述。这个描述包含:气缸数,排量,马力以及重量。

使用 tf.keras API

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
from tensorflow import keras

1、获取 Auto MPG 数据集

# get Auto MPG dataset
dataset_path = keras.utils.get_file("auto-mpg.data", "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")
print(dataset_path)

column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
                'Acceleration', 'Model Year', 'Origin']
raw_dataset = pd.read_csv(dataset_path, names=column_names,
                          na_values="?", comment='\t',
                          sep=" ", skipinitialspace=True)

dataset = raw_dataset.copy()
print(dataset.tail())

# 把数据集中Origin列改为不同的地方:'USA' 'Europe' 'Japan'
dataset.isna().sum()
dataset = dataset.dropna()
origin = dataset.pop('Origin')
dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
print(dataset.tail())

2、拆分训练数据集和测试数据集

现在需要将数据集拆分为一个训练数据集和一个测试数据集。最后将使用测试数据集对模型进行评估。

train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)

3、数据检查

快速查看训练集中几对列的联合分布。

sns.pairplot(train_dataset[["MPG", "Cylinders", "Displacement", "Weight"]], diag_kind="kde")
plt.show()
train_stats = train_dataset.describe()
train_stats.pop("MPG")
train_stats = train_stats.transpose()
print(train_stats)

4、从标签中分离特征

将特征值从目标值或者"标签"中分离。 这个标签是你使用训练模型进行预测的值。

train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')

5、数据规范化

再次审视下上面的 train_stats 部分,并注意每个特征的范围有什么不同。

使用不同的尺度和范围对特征归一化是好的实践。尽管模型可能在没有特征归一化的情况下收敛,它会使得模型训练更加复杂,并会造成生成的模型依赖输入所使用的单位选择。

注意:尽管我们仅仅从训练集中有意生成这些统计数据,但是这些统计信息也会用于归一化的测试数据集。我们需要这样做,将测试数据集放入到与已经训练过的模型相同的分布中。

def norm(x):
    return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)

6、建立模型

构建模型:含两个隐藏层,一个输出层。

def build_model():
    model = keras.Sequential([
        keras.layers.Dense(64, activation='relu', input_shape=[len(train_dataset.keys())]),
        keras.layers.Dense(64, activation='relu'),
        keras.layers.Dense(1)
    ])
    optimizer = tf.keras.optimizers.RMSprop(0.001)
    model.compile(loss='mse',
                  optimizer=optimizer,
                  metrics=['mae', 'mse'])
    return model

model = build_model()
model.summary()  #检查模型

7、训练模型

对模型进行1000个周期的训练,并在 history 对象中记录训练和验证的准确性。

class PrintDot(keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs):
        if epoch % 100 == 0: print('')
        print('.', end='')


EPOCHS = 1000

history = model.fit(
    normed_train_data, train_labels,
    epochs=EPOCHS, validation_split=0.2, verbose=0,
    callbacks=[PrintDot()])

# 使用 history 对象中存储的统计信息可视化模型的训练进度
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print('\n')
print(hist.tail())

def plot_history(history):
    hist = pd.DataFrame(history.history)
    hist['epoch'] = history.epoch

    plt.figure()
    plt.xlabel('Epoch')
    plt.ylabel('Mean Abs Error [MPG]')
    plt.plot(hist['epoch'], hist['mae'],
             label='Train Error')
    plt.plot(hist['epoch'], hist['val_mae'],
             label='Val Error')
    plt.ylim([0, 5])
    plt.legend()

    plt.figure()
    plt.xlabel('Epoch')
    plt.ylabel('Mean Square Error [$MPG^2$]')
    plt.plot(hist['epoch'], hist['mse'],
             label='Train Error')
    plt.plot(hist['epoch'], hist['val_mse'],
             label='Val Error')
    plt.ylim([0, 20])
    plt.legend()
    plt.show()

plot_history(history)

在这里插入图片描述
在这里插入图片描述
该图表显示在约100个 epochs 之后误差非但没有改进,反而出现恶化。让我们更新 model.fit 调用,当验证值没有提高时自动停止训练。我们将使用一个 EarlyStopping callback 来测试每个 epoch 的训练条件。如果经过一定数量的 epochs 后没有改进,则自动停止训练。

# patience 值用来检查改进 epochs 的数量
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
history = model.fit(normed_train_data, train_labels, epochs=EPOCHS,
                    validation_split=0.2, verbose=0,
                    callbacks=[early_stop, PrintDot()])
plot_history(history)

改进后的结果:
在这里插入图片描述在这里插入图片描述

# 评估模型
print('\n')
loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=2)
print("Testing set Mean Abs Error: {:5.2f} MPG".format(mae))
# 78/78 - 0s - loss: 6.4349 - mae: 1.9872 - mse: 6.4349
# Testing set Mean Abs Error:  1.99 MPG

8、预测

使用测试集中的数据预测 MPG 值,以及误差分布:

test_predictions = model.predict(normed_test_data).flatten()

plt.scatter(test_labels, test_predictions)
plt.xlabel('True Values [MPG]')
plt.ylabel('Predictions [MPG]')
plt.axis('equal')
plt.axis('square')
plt.xlim([0, plt.xlim()[1]])
plt.ylim([0, plt.ylim()[1]])
_ = plt.plot([-100, 100], [-100, 100])
plt.show()

error = test_predictions - test_labels
plt.hist(error, bins=25)
plt.xlabel("Prediction Error [MPG]")
_ = plt.ylabel("Count")
plt.show()

在这里插入图片描述
在这里插入图片描述

9、总结

处理回归问题的技术:

  1. 均方误差(MSE)是用于回归问题的常见损失函数(分类问题中使用不同的损失函数)
  2. 类似的,用于回归的评估指标与分类不同。 常见的回归指标是平均绝对误差(MAE)
  3. 当数字输入数据特征的值存在不同范围时,每个特征应独立缩放到相同范围。
  4. 如果训练数据不多,一种方法是选择隐藏层较少的小网络,以避免过度拟合。
  5. 早期停止是一种防止过度拟合的有效技术。

10、参考资料

TensorFlow教程:https://tensorflow.google.cn/tutorials/keras/regression?hl=zh_cn
https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/keras/regression.ipynb
Auto MPG Data Set:https://archive.ics.uci.edu/ml/datasets/auto+mpg

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值