传递函数推导

 

 

 

这个传递函数怎么推导?

推导过程如下:

### DCDC Boost 转换器传递函数推导 对于DCDC Boost转换器而言,其传递函数描述了输入电压到输出电压的关系以及控制信号对输出电压的影响。为了更好地理解这个过程,下面将详细介绍Boost转换器的小信号模型及其传递函数推导。 #### 小信号建模基础 在分析开关电源时,通常采用平均状态空间法来建立系统的动态方程。该方法假设占空比\(D\)在一个周期内保持不变,并利用线性化技术处理非线性的PWM调制特性。通过这种方式可以得到连续时间下的微分方程组表示形式[^1]。 #### 动态行为分析 当考虑理想条件下的Boost变换器工作模式——即不计损耗的理想情况,忽略寄生参数,则有: \[ V_{out} = \frac{V_{in}}{1-D}\] 其中 \( D=\frac{T_on}{T_s}=ton/Ts\), Ts为开关周期,Ton为开通时间。此表达式反映了稳态条件下输出电压与输入电压之间的关系[^2]。 然而,在实际情况中,由于存在各种因素如元件非理想性和负载变化等因素影响着系统性能,因此有必要引入小扰动量来进行更精确地描述。设δd代表占空比上的一个小增量;而vin(t),iL(t)分别对应于电感两端瞬时电压和电流的变化成分。那么基于上述原理,我们可以写出如下差分方程式: \[ v_L (t)=v_{in}(t)-dv_{out}/dt * L\] 这里 d/dt 表示求导运算符; L 是指电感值。进一步简化并考虑到交流分量后可得: \[ i_L(s)=(V_{IN}-V_{OUT})/(R+s*L)\] 此处 s=σ+jω 用于拉普拉斯域中的频率响应表征; R 可视为等效串联电阻ESR 或者近似认为是负载阻抗Z_load 的实部部分[^3]。 #### 控制至输出传递函数 最终目标是要找到从控制器发出指令到达实际输出端口之间完整的传输路径。为此定义了一个新的变量 u 来代替原始 PWM 波形所携带的信息。于是乎整个闭环控制系统可以用下述框图概括出来: ![Control System Block Diagram](https://latex.codecogs.com/svg.image?\dpi{120}&space;\begin{array}{c}%20G_c(s)%20=%20K_p%2B\frac{K_i}{s}\\%20\\%20G_v(s)%20=%20\frac{\Delta&space;i_L(s)}{\Delta&space;d(s)}=-\frac{(V_{IN}-V_{OUT})(1-D)^2}{(1-D)V_{OUT}sL+(1-D)(r_d+r_o)+r_o(V_{IN}-V_{OUT})}\\%20\\%20H(s)&space;=&space;-1/%20\end{array}) - Gc(s): 控制增益环节 - Gv(s): 开关网络到电感电流的比例因子 - H(s): 输出采样反馈系数 综上所述,经过一系列数学变换之后便可以获得标准形式下的传递函数 T(s): \[ T(s)=\frac{V_{out}(s)}{U(s)}=\frac{-k_g(1-d_0)^2}{Ts^2+Bs+C}\] 这里的 k_g,V_in,d_0 分别指的是增益常数、输入直流电压水平及初始占空比设置; A,B,C 则是由具体硬件配置决定的一系列固定数值[^4]。 ```matlab syms Vin Vout d L C ESR Rs Kp Ki s; % Define symbolic variables for mathematical operations. Gv = ((Vin-Vout)*(1-d)^2)/((1-d)*Vout*s*L + (1-d)*(Rs+ESR)+(RS*(Vin-Vout))); % Transfer function from duty cycle to inductor current change. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值