语义分割该如何走下去?

作者:立夏之光
链接:https://www.zhihu.com/question/390783647/answer/1223902660
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

做过一年多语义分割,来回答一下这个问题。

语义分割目前遇到了很大的瓶颈

首先是研究方式的受限。目前的研究方案,大都构建在Dilated FCN[1]之上。在这一设定下,研究者在做的都是戴着镣铐跳舞。既往的研究,能做的无非如下两种选择:

  1. 设计一个更有效的语义分割head;
  2. 修改feature flow,现在多用NAS形式。

其次是数据集的受限。语义分割所用的数据集需要大量标注的数据,这造成了如下两个现象:

  1. 少有的几个数据集刷到接近天花板。
  2. 数据量少,支撑不起 training from scratch。

现象1直接导致了近些年的工作显得“没有突破”。做过语义分割的人,肯定知道提升0.5 mIoU是怎样一种难度。这是诸多研究者们现在遇到的最大难点。

现象2则是上述“研究方式的受限”的原因。除了

@张航

等大组,一般人训练不起ImageNet,所以无法 from scratch 地训练完整的网络,于是只能在head上做功夫。

最后是领域内卷。语义分割的pipeline比较简洁,适合快速入手和尝试idea。刚入手时看过一系列文章,很容易产生“这还不容易”的错觉。于是会有一些眼高手低的现象,但仍然不缺乏一批能沉下心的能手不断刷新榜单。

于是,三座大山之下,目前领域的发展便出现了

@点点点

回答中所说的同质化,令审稿人一脸懵逼。不得不说,领域确实需要新的破局点,而非蜂拥追热。

近些年的文章,也并非没有价值

三座大山之下,仍是不断有引人思考的文章出现。

  • 远有ASPP[2]和Dilated FCN[1] ,它们定义了dilated conv这一操作,而今已是深度学习的入门基础。能成为人人皆知的基础知识,可见之影响力。
  • 近有

    @Yanwei Li

    的Dynamic routing,打破了上述“研究方式的受限”,让人意识到还有比NAS更灵活的存在。
  • 而一系列对注意力机制的不断思考与探索[3],也让人见识到:注意力不止是注意力。

一个领域不一定要惊天动地才有价值,稳扎稳打的推进亦让人受益匪浅。

而领域内卷,反而一定程度上提升了领域的bar

  • 君不见,NL(nonlocal) based文章别处风生水起,而本领域却被连环拒稿。
  • 君不见,seg领域arxiv层出不穷,但只有个中精妙且幸运者,才能中的广传。

许多语义分割的文章,目标不止本领域

很多人搞语义分割,是因为它是一个优良的representation learning的试兵厂。其简洁的pipeline,方便轻松地进行新模块的探索。

举自己的EMANet[4]为例,其作为一种general的模块,本人对它的期望不只是分割领域。倘若资源充足,本人何尝不想学习ResNest,直接做成backbone。而很多人眼中它就是个注意力,而我更看中他的低秩性质。我们后续的工作也在继续挖掘这一性质,而彻底告别注意力的外壳。

一些方法论则看似弱鸡,实则并不浅薄

这里援引下高赞回答[5]的第五条:DNN太枯燥,融入点传统视觉的方法搞成end-to-end训练“融入”一词轻描淡写,但个中奥妙却被掩藏。

深度学习时代,人们忽视了太多经典的基础。很多过去早已研究透彻的东西,被重新发明一套名词。与之相比,正确的价值观,应该是重视前人的宝贵探索,并在这个繁杂逐利的时代将之renaissance。与其重造轮子,倒不如思考下DL的局限,而经典可以为之补足什么。

Lecun大力提倡的Differentiable programming[6],恰是这一思潮的重要武器。有经验的人会告诉你,“搞成end-to-end”从来不是一蹴而就。这一功力,不易拿捏。过轻则网络难以训练,过重则丧失优异性质,完全沦为标准网络。鄙人的EMANet[4],算作这类方法里最low的范例。但是跟我讨论过的人都知道,只靠纯粹简洁E、M、R公式难以work,背后的付出多在Bases Maintenance上。

而前段时间热评的PointRend[7],又有多少人能开脑洞从rendering迁移到seg;又有多少人能这“简陋”算法高效实现且跑出高性能?而Nonlocal[8]出现之前,又有多少人思考到了self-attention和经典非局部算子的联系?

盖大智者,能思其本质;而飘飘者,啖笑其浅薄。

遇到瓶颈,正适合高追求者入局

对强者:

领域陷入瓶颈时,正是入局变革的好时机。当总结出了种种不足,恰是对其rethink的最好时候。一个领域充斥“没啥突破”的文章时,一篇高质量的文章,定能引得众人赏识。鹤立鸡群,总比强强对抗来的容易,不是么?

领域内的研究者,何尝不希望若干破局者的到来?诸多人陷入有限资源的内卷,都希望能有新的着力点。一篇高质量文章的出炉,最差的待遇也是成百上千引用者的追逐。对于有相关领域经验,且对representation learning有深入思考的同行,语义分割是你们很好的试金石。

对小白:

全监督的语义分割确实门槛略高,需要丰富的机器资源,稳扎稳打扫平trick的耐心,还需要足够开阔的思维来衍生漂亮而实用的idea,所以鄙人也不建议盲目入坑。

道路千万条,求真第一条。造假一时爽,同门两行泪。

 

参考

  1. ^abYu, Fisher, Vladlen Koltun, and Thomas Funkhouser. "Dilated residual networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. https://arxiv.org/abs/1705.09914
  2. ^Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine intelligence 40.4 (2017): 834-848. http://arxiv.org/abs/1606.00915
  3. ^语义分割中的Attention和低秩重建 https://zhuanlan.zhihu.com/p/77834369
  4. ^ab[ICCV 2019 Oral] 期望最大化注意力网络 EMANet 详解 https://zhuanlan.zhihu.com/p/78018142
  5. ^语义分割该如何走下去? - 湃森的回答 - 知乎  http://www.zhihu.com/question/390783647/answer/1221984335
  6. ^Differentiable programming-Wikipedia https://en.wikipedia.org/wiki/Differentiable_programming
  7. ^Kirillov, Alexander, et al. "PointRend: Image Segmentation as Rendering." arXiv preprint arXiv:1912.08193 (2019). http://xxx.itp.ac.cn/pdf/1912.08193v2
  8. ^Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. https://arxiv.org/abs/1711.07971

 

 

====================================================

 

 

作者:湃森
链接:https://www.zhihu.com/question/390783647/answer/1221984335
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

说句泼冷水的话,对大多数研究从业人员来说语义分割目前已经达到瓶颈期了。

顶会顶刊paper看来看去真没啥突破:

(1)手动设计网络结构 -> NAS搜索;

(2)固定感受野 -> 引入空间注意力做感受野自动调节;

(3)效果提升不上去 -> 换个思路做实时分割来对比结果;

(4)自监督太热门 -> 引入弱监督 (GAN, 知识蒸馏, ...) + trick = 差不多的score;

(5)DNN太枯燥,融入点传统视觉的方法搞成end-to-end训练;

(6)CNN太单调,配合GCN搞点悬念;

(7)嫌2D太low逼,转3D点云分割;

觉得太懒?积木堆起:A+B,A+B+C,A+B+C+D,...

积木总结:

A-注意力机制:SE ~ Non-local ~ CcNet ~ GC-Net ~ Gate ~ CBAM ~ Dual Attention ~ Spatial Attention ~ Channel Attention ~ ... 【只要你能熟练的掌握加法、乘法、并行、串行四大法则,外加知道一点基本矩阵运算规则(如:HW * WH = HH)和sigmoid/softmax操作,那么你就能随意的生成很多种注意力机制】

B-卷积结构:Residual block ~ Bottle-neck block ~ Split-Attention block ~ Depthwise separable convolution ~ Recurrent convolution ~ Group convolution ~ Dilated convolution ~ Octave convolution ~ Ghost convolution ~ ...【直接替换掉原始卷积块就完事了】

C-多尺度模块:ASPP ~ PPM ~ DCM ~ DenseASPP ~ FPA ~ OCNet ~ MPM... 【好好把ASPP和PPM这两个模块理解一下,搞多/减少几条分支,并联改成串联或者串并联结合,每个分支搞点加权,再结合点注意力或者替换卷积又可以组装上百种新结构出来了】

D-损失函数:Focal loss ~ Dice loss ~ BCE loss ~ Wetight loss ~ Boundary loss ~ Lovász-Softmax loss ~ TopK loss ~ Hausdorff distance(HD) loss ~ Sensitivity-Specificity (SS) loss ~ Distance penalized CE loss ~ Colour-aware Loss...

E-池化结构:Max pooling ~ Average pooling ~ Random pooling ~ Strip Pooling ~ Mixed Pooling ~...

F-归一化模块:Batch Normalization ~Layer Normalization ~ Instance Normalization ~ Group Normalization ~ Switchable Normalization ~ Filter Response Normalization...

G-学习衰减策略:StepLR ~ MultiStepLR ~ ExponentialLR ~ CosineAnnealingLR ~ ReduceLROnPlateau ~...

H-优化算法:BGD ~ SGD ~ Adam ~ RMSProp ~ Lookahead ~...

I-数据增强:水平翻转、垂直翻转、旋转、平移、缩放、裁剪、擦除、反射变换 ~ 亮度、对比度、饱和度、色彩抖动、对比度变换 ~ 锐化、直方图均衡、Gamma增强、PCA白化、高斯噪声、GAN ~ Mixup

J-骨干网络:LeNet ~ ResNet ~ DenseNet ~ VGGNet ~ GoogLeNet ~ Res2Net ~ ResNeXt ~ InceptionNet ~ SqueezeNet ~ ShuffleNet ~ SENet ~ DPNet ~ MobileNet ~NasNet ~ DetNet ~ EfficientNet ~ ...

...

语义分割从入门到放弃...

 

 

 

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值