RS-FAIRFRS: COMMUNICATION EFFICIENT FAIR FEDERATED RECOMMENDER SYSTEM

RS-FAIRFRS是一种新的通信高效的公平联邦推荐系统,它通过随机抽样策略减少通信成本,同时在客户端层面建立公平的全局模型以减轻人口偏见。该系统基于矩阵分解的FedRec模型,采用双公平更新方法确保精度奇偶性,无需分享敏感属性。实验表明,在ML-1M和ML-100K数据集上,RS-FAIRFRS能有效降低通信成本和人口统计偏差,提高模型准确性。
摘要由CSDN通过智能技术生成

RS-FAIRFRS: COMMUNICATION EFFICIENT FAIR FEDERATED RECOMMENDER SYSTEM

Anonymous authors
Paper under double-blind review
communication efficient fair federated recommender system
ICLR 2023

1. What does literature study?

  1. 结合随机抽样和确定每轮通信中要抽样的客户端数量以保持模型在FRS中的准确性;训练本地客户端建立公平的全局模型,以减少客户端层面的人口偏见。

2. What’s the innovation?

1. Past shortcomings
  1. 监督学习算法通过在训练损失中添加公平约束来减轻群体偏见,这需要与服务器共享受保护的属性
2.Innovation:
  1. 提出的基于随机抽样的公平联邦推荐系统无需分享其受保护的属性。
  2. 提供了客户端采样复杂度界限提高了通信成本。
  3. 在两个数据集(ML-1M,ML-100K)和不同的敏感特征(年龄和性别)中证明RS-FAIRFRS有助于降低通信成本人口统计偏差,提高了模型的准确性。

3. What was the methodology?

在这里插入图片描述

利用FedRec作为基础模型,使用矩阵分解识别潜在特征向量。最小化损失函数:
L M F = ∑ u ∈ [ n ] ∑ i ∈ [ m ] p u i ( r u i − U u ⋅ V i T ) 2 + λ r ( ∥ V i ∥ 2 + ∥ U u ∥ 2 ) \mathcal{L}^{\mathcal{M F}}=\sum_{u \in[n]} \sum_{i \in[m]} p_{u i}\left(r_{u i}-U_u \cdot V_i^T\right)^2+\lambda^r\left(\left\|V_i\right\|^2+\left\|U_u\right\|^2\right) LMF=u[n]i[m]pui(ruiUuViT)2+λr(Vi2+Uu2)

1.随机采样

利用霍夫丁约束支持不替换的抽样,随机均匀采样(无替换,不重复)将包含来自每个集群的大致相等数量的客户端。
采样 C T C^{\mathcal{T}} CT个客户端的平均项目向量: V ˉ i τ = 1 n τ ∑ i ∈ C τ V i \bar{V}_i^\tau=\frac{1}{n \tau} \sum_{i \in C^\tau} V_i Vˉiτ=nτ1iCτVi,总的 n n n个客户端的平均项目向量: V ˉ i n = 1 n ∑ i = 1 n V i \bar{V}_i^n=\frac{1}{n} \textstyle\sum_{i=1}^n V_i Vˉin=n1i=1nVi。使样本和整个训练集预测评分的期望相等 E [ U u T V ˉ i τ ] = E [ U u T V ˉ i n ] \mathbb{E}[U_u^T\bar{V}_i^\tau]=\mathbb{E}[U_u^T\bar{V}_i^n] E[UuTVˉiτ]=E[UuTVˉin]

2.双公平更新

精度奇偶性 L a p = 1 ∣ g ∣ ∑ u ∈ g 1 ∣ I u ∣ ∑ I ∈ I u ( r ^ u i − r u i ) 2 − 1 ∣ ¬ g ∣ ∑ u ∈ ¬ g 1 ∣ I u ∣ ∑ I ∈ I u ( r ^ u i − r u i ) 2 \mathcal{L}^{a p}=\frac{1}{|g|} \sum_{u \in g} \frac{1}{\left|I_u\right|} \sum_{I \in I_u}\left(\hat{r}_{u i}-r_{u i}\right)^2-\frac{1}{|\neg g|} \sum_{u \in \neg g} \frac{1}{\left|I_u\right|} \sum_{I \in I_u}\left(\hat{r}_{u i}-r_{u i}\right)^2 Lap=g1ugIu1IIu(r^uirui)2∣¬g1u¬gIu1IIu(r^uirui)2,表示两个群体之间的差异。对于模型 θ {\theta} θ θ ˉ \bar{\theta} θˉ,如果 L a p ( θ ) < L a p ( θ ˉ ) \mathcal{L}^{a p}({\theta})<\mathcal{L}^{a p}(\bar{\theta}) Lap(θ)Lap(θˉ),则 θ {\theta} θ更公平。
服务器端20%的客户端数据用来评估公平损失: min ⁡ U , V L M F + λ f L a p \min\limits_{U,V}\mathcal{L}^{MF}+\lambda^f\mathcal{L}^{ap} U,VminLMF+λfLap以获得 V f a i r V_{fair} Vfair发给客户端。
客户端从服务器下载 V f a i r V_{fair} Vfair V i V_{i} Vi;公平目标函数为: min ⁡ U , V L M F + η ( ∣ ∣ V f a i r − V i ∣ ∣ 2 ) \min\limits_{U,V}\mathcal{L}^{MF}+\eta(||V_{fair}-V_i||^2) U,VminLMF+η(∣∣VfairVi2)

4. What are the conclusions?

  1. 结论:
    在这里插入图片描述
    在这里插入图片描述
    经过实验客户端抽样比率为 T = 35 % {\mathcal{T}}=35\% T=35%作为理想值;>18和男性群体数量多可以获得更低的损失;RS-FairFRS可以实现公平性。

5. others

男多女少,平均抽样

  1. 我们提出了一种具有两个阶段的双公平向量更新技术。在阶段1中,服务器聚合接收到的项目向量,并对其进行训练,使其在一小部分数据上公平。在第2阶段,客户端将本地误差降至最低,并学习更接近全局公平项目向量的项目向量。

  2. 利用FedRec作为基础模型,客户端上传项目梯度,从服务器下载项目向量。
    (1)FRS中的人口统计学偏差问题,量化为不同组间平均错误率差异。
    (2)给出了FRS的样本复杂度边界。

  3. 集中式RS领域的公平性:
    (1)Sirui Yao and Bert Huang. Beyond parity: Fairness objectives for collaborative filtering. Advances in neural information processing systems, 30, 2017.
    RecBole-FairRec-Optimized/focf.py at 5c88cb8c2f2586febe6bff8832d7bdc326e8392b · Keyvantajfar/RecBole
    RecBole-FairRec/focf.py at 08a7f4cf330477bc4e755749df7dda826e96384a · TangJiakai/RecBole-FairRec
    (2) Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. User-oriented fairness in recommendation. In Proceedings of the Web Conference 2021, pp. 624–632, 2021.
    https://github.com/rutgerswiselab/user-fairness

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值